首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了优化表面等离子体共振传感器的灵敏度,基于薄膜光学理论,分析了银-金双金属层表面等离子体共振传感器的反射率和灵敏度随金属薄膜厚度变化的规律。发现在满足共振角反射率小于1%的条件下,银膜和金膜厚度存在一定的取值范围; 在此厚度范围内,传感器的灵敏度随着金属薄膜(银膜与金膜)厚度的增大而提高,灵敏度增量最大可达5°/RIU。结果表明,在保证一定共振角反射率的前提下,可通过增加双金属层中金属薄膜的厚度提高双金属层表面等离子体共振传感器的灵敏度。  相似文献   

2.
表面等离子共振传感技术的发展与应用   总被引:3,自引:0,他引:3  
表面等离子体共振(surface Plasmon Resonance SPR)技术是一种简单、直接的传感技术,是表面等离子体在金属和电介质的交界面上形成的一电荷层,在电磁波的激励下,表面等离子体发生共振现象。根据这一原理研制的表面等离子体传感器在检测、分析生物分子间的相互作用等方面得广泛的应用。介绍表面等离子传感器的工作原理和研究进展,由于其具有体积小、测量准确度高、抗电磁干扰能力强,因此表面等离子共振传感器在生物医学、环境保护、食品及化学等领域得到广泛的应用前景。  相似文献   

3.
提出了一种中红外波段宽范围低折射率检测的D型环双芯光子晶体光纤表面等离子体共振传感器。该结构为一个D型环,并在其内外表面都沉积一层金属层。采用全矢量有限元方法分析了该传感器的性能。结果表明,该传感器可以在中红外波段实现低折射率传感,并具有高传感灵敏度特性。分析物的折射率可检测范围为120~138,平均波长灵敏度和最大波长灵敏度可分别达到13717nm/RIU和21150nm/RIU,分辨率可达到194×10-5 RIU。该传感器可在化学、生物以及环境检测等领域有重要的应用。  相似文献   

4.
In this paper, we propose a photonic crystal fiber (PCF) sensor based on the surface plasmonic resonance (SPR) effect for simultaneous temperature and refractive index (RI) measurement. The coupling characteristics and sensing performance of the sensor are analyzed using the full vector finite element method (FEM). The sensor provides two channels for independent measurement of RI and temperature. When operating independently, channel I supports y-polarized light with a sensitivity of up to 7 000 nm/RIU for detecting RI, while channel II supports x-polarized light with a sensitivity of up to 16 nm/°C for detecting temperature. Additionally, we investigate the influence of gold layer thickness on the sensing performance to optimize the sensor.  相似文献   

5.
光纤SPR传感器的信号检测及处理   总被引:2,自引:0,他引:2       下载免费PDF全文
光纤表面等离子体共振(SPR)传感器是目前应用在环境介质检测和生物大分子检测等方面的新型、高精度传感器。首先,以表面等离子体共振传感理论为基础,对系统检测结果进行数据处理,得出采用均值估计的线性模型。在不同时刻与相同环境介质下,检测某一溶液的十组光谱数据并进行均值估计,从而得到有效的共振波长。其次,利用小波分析方法进行信号处理,校正了噪声产生的漂移,对光谱信号压缩处理,以提高检测精度。再通过Matlab进行模拟仿真优化传感系统性能。并对不同折射率溶液如蒸馏水、酒精等进行检测,得到了良好的光谱响应曲线,证明了在检测范围内折射率和共振波长之间具有良好的线性关系。  相似文献   

6.
一种基于表面等离子体共振的多模光纤H2传感器   总被引:2,自引:0,他引:2  
报道了一种基于表面等离子体共振(SPR)的多模光纤H2敏传感器,是通过化学腐蚀多模光纤使纤芯裸露再镀上Pd-Ag合金膜所构成,并给出了相应的理论分析和实验制作过程。理论分析表明,对于0~4%范围内的H2浓度,兼顾测量范围、灵敏度和响应时间,合金膜厚度选择在20nm附近为宜;实验研究结果显示,用20nm厚的Pd-Ag合金膜和15mm的光纤作用长度,在温度为26℃、相对湿度为60%的条件下,传感器能探测0~4%浓度范围内的H2,响应时间小于50s。  相似文献   

7.
为了研究CuO的不同掺杂浓度对表面等离子共振角的影响,提出一种新型的棱镜耦合法Ag-SnO2(掺杂CuO)复合膜表面等离子共振光学传感器结构.采用射频反应溅射法在清洗处理后的金红石棱镜上依次制备Ag膜(50nm),SnO2膜(50nm),CuO和SnO2膜(50nm)4层膜结构,CuO的厚度依其不同的掺杂体积分数的不同而不同,经过退火实现SnO2薄膜的掺杂得到复合膜.以He-Ne激光62.8nm为入射激励光源,通过采用表面等离子共振实验方法,CuO的掺杂体积分数分别为0,0.01和0.05时,得到共振角分别为59.61°,60.52°和61.3°的结果.结果表明,CuO掺杂的体积分数越大,表面等离子共振的共振角越大.  相似文献   

8.
光纤表面等离子体波传感器具有结构简单、灵敏度高等特点,在机敏结构中具有非常重要的应用前景。运用光纤表面等离子体波来测量折射率是一种简便、灵敏的方法,我们可以利用这一特性制作出通过检测折射率对复合材料进行固化检测的光纤表面等离子体波传感器。本文介绍了光纤表面等离子体波传感器的基本原理及利用这种光纤传感器来测量折射率的初步研究。  相似文献   

9.
A surface plasmon resonance(SPR) sensor based on a multi-core photonic crystal fiber(PCF) is presented in this paper.There is only one analyte channel positioned in the center of the PCF cross section,rather than several closely arranged analyte channels around the central core.So the design of this sensor not only reduces the consumption of gold and samples,but also effectively avoids the interference between neighboring analyte channels.Optical field distributions of this fiber at different wavelengths and the sensing properties of this sensor are theoretically analyzed and discussed using finite element method(FEM).Simulation results confirm that both the thickness of metallic layer and the fiber structural parameters have significant effect on sensing performance.The amplitude sensitivity of the sensor is found to be 1.74×10-5RIU,and the spectral sensitivity is 3300 nm/RIU,corresponding to a resolution of 3.03×10-5 RIU.Finally,in order to achieve PCF-SPR sensing characteristics,an experiment design scheme based on spectroscopic detection method is proposed.  相似文献   

10.
为了提高生物参量检测的灵敏度和避免电磁干扰,提出一种基于表面等离子共振的光子晶体光纤传感器应用于癌胚抗原(CEA)溶液的检测.该传感器采用不同直径空气孔进行三层排列的结构,将金薄膜作为金属层镀在纤芯表面,并在金薄膜和待测CEA溶液间增加一层基于核酸适配子的特异性适配层,采用全矢量有限元法对该传感器进行数值模拟与仿真.仿...  相似文献   

11.
基于光纤SPR传感器水中盐度的测定   总被引:3,自引:1,他引:3       下载免费PDF全文
论述了检测系统和基于拉锥技术的光纤表面等离子共振(SPR)传感器的详细设计.制定了基于SPR的光纤传感器检测水样品的盐度的比较方案,以满足一些实践需求,诸如精度,速度快,小尺寸和高灵敏度折射率单位(RIU).利用Matlab和C++仿真得到了每个参数对光纤拉锥SPR传感器系统设计性能的影响,这为设备参数的合理选择提供了理论依据.设计了一种新的检测系统,将光学、机械和电子技术相结合.根据拉锥技术、模场分析理论及初步实验结果表明,该装置基本上达到了设计要求,如小巧、便携、良好的线性度和高度单位折射率.基于这个新设备对具有不同的盐度的NACL-水混合物进行了SPR实验,实验结果表明,可以实现对单个样品的精确检测.其谐振波长分辨率可以达到0.15 nm,同时,该检测结果具有较高的线性度和良好的稳定性,折射率(RI)检测偏差小于0.002.  相似文献   

12.
小波分析用于表面等离子体波光谱的噪声滤除   总被引:1,自引:0,他引:1  
针对光纤表面等离子体波传感器,对小波阈值去噪的方法在测定表面等离子体波光谱中的应用进行了理论研究.首先将高斯白噪声加入理论SPR光谱,利用Daubechies9和Symlet7、11、14、1 5等五种小波分别对其进行去噪.将去噪后的共振峰强度和共振波长与理论值相比较,可知Symlet11小波用于SPR光谱的去噪性能较好.搭建光纤SPR传感器实验系统,利用Symlet11小波对在五个不同时刻测得的SPR反射光谱进行去噪,去噪后的共振波长和共振强度的标准偏差分别为0.4039 nm和0.2231%,通过对比证明小波阈值去噪方法能较好地修正由于噪声所产生的共振波长漂移,使得光纤SPR传感器满足实际运用的需要.  相似文献   

13.
14.
陈郁芝  李学金 《红外与激光工程》2020,49(12):20201055-1-20201055-5
光纤表面等离子体共振(SPR)传感器结合了光纤传感器的微型化、可在线传输、易操作和SPR生物检测技术的高灵敏、高选择性、免标记等优势,是当前免疫学生物传感器的研究热点。但传统多模光纤SPR传感器的信号在远距离传输中易损耗、失真。文中提出了一种单模-无心-单模光纤型SPR传感器,能有效减小信号传输中的损耗与失真,且适合与当前的光纤网络衔接。为了消除传感器中的干扰信号,改变无心光纤的芯径,采用去除背景干扰,高斯拟合等方法,最终选取了具有芯径为61.5 μm无心光纤的此类传感器,并从中提取出了有效的SPR光谱信号。传感器的灵敏度为1153.40 nm/RIU,分辨率为1.70×10?4 RIU。此类光纤生物传感器的成功开发,为智慧医疗、远程医疗提供了一种新的思路。  相似文献   

15.
本文报道了一种基于色相算法的彩色表面等离子体共振(SPR)成像传感器,该传感器不仅能够对发生于SPR芯片表面的物理化学反应进行直观的图像观测,还能基于色相算法对这些表面反应进行定量分析。利用自制的波长/图像同步检测型SPR传感器,实验获得了不同共振波长对应的共振图像,然后借助色相算法求得每一幅共振图像对应的二维色相分布及其平均色相,建立了共振波长与图像平均色相的依赖关系,用于优化基于色相参数的SPR折射率灵敏度。实验选择起始共振波长为650nm,测得基于色相的折射率灵敏度为3 338/RIU,是基于共振波长的折射率灵敏度的1.49倍。利用彩色SPR成像技术能够直观地观测到金膜表面涂布的聚四氟乙烯薄膜的不均匀性,再通过计算图像局部区间的平均色相,可以定量获得不同薄膜厚度对应的折射率灵敏度。实验结果证明了基于色相算法的彩色SPR成像传感器明显优于常规SPR传感器。  相似文献   

16.
This paper reports on a novel design of a remote sensor for temperature detection based on surface plasmon resonance and optical fiber technology. We theoretically analyze the performance of proposed sensor under different conditions related to its constituents, i.e., optical fiber, metallic layer, sensing region, and launched light. The effect of the related parameters such as numerical aperture, fiber length, core diameter, FWHM of the Gaussian input on sensor is analyzed along with its physical explanation. The numerical results presented in this paper leads to a significant optimization of the important design parameters to achieve a high temperature detection accuracy and sensitivity of a fiber optic remote sensor.  相似文献   

17.
岳嵩  王然  侯茂菁  黄刚  张紫辰 《红外与激光工程》2020,49(5):20190489-20190489-7
超材料完美吸波体是一种典型的电磁功能材料,在包括高效太阳能利用等领域有巨大的应用前景。迄今的工作主要集中在工作波长的可调谐性以及双波段、三波段甚至宽带吸收方面。激光防护等特殊应用要求超材料完美吸波体在指定波长附近拥有窄带吸收性能,然而这方面的研究当前还比较少。基于铝反射镜-SiO2介质层-铝圆盘的三层结构,设计并数值模拟研究了一种工作在1 064 nm的窄带超材料完美吸波体。通过对比发现,相比于利用小尺寸结构单元的表面等离子体振荡基模,利用大尺寸结构单元的表面等离子体振荡高阶模式,可以在指定波长处得到线宽更窄的完美吸收效果。进一步,通过对介质层厚度、圆盘直径和晶格周期等主要结构参数进行系统研究,揭示了各个结构参量对于超材料完美吸波体光学响应的影响规律。在此基础上,通过对结构参数的优化,最终得到了透过率为0、反射率低至8.56×10?5、模式线宽约为55 nm的高性能、窄带超材料完美吸波体设计。由于该工作中涉及的所有材料均CMOS兼容,同时结构单元的特征尺寸也处于光刻技术易于加工的区间,因此拥有良好的大规模实际应用前景。  相似文献   

18.
We propose a surface plasmon(SP) structure in electrically pumped multiple graphene-layer(MGL), and calculate the functions of dynamic conductivity and absorption coefficient. Meanwhile, the dependences of absorption coefficient on different factors are simulated. SP can get gain when absorption coefficient is negative, and the SP gain can be enhanced by lowering temperature, applying high bias voltage and choosing the graphene with proper layer number and long momentum relaxation time. The study on SP gain is hopeful to be used in amplifiers and graphene-based plasmon devices.  相似文献   

19.
表面等离子体共振(surface plasmon resonance,SPR) 在生物传感中有极大的应用价值,基于棱镜结构的共振角的相位传感比反射率传感具有更高的灵敏度。多通道实时相移探测是SPR 生物传感的研究热点和难点。本文提出了一种基于Kretschmann棱镜结构的衰减全反射(attenuated total reflection,ATR) 单光路的SPR相位检测系统。通过液晶可变延迟器(liquid crystal variable retarder,LCVR) 调控可激发表面等离子体激元(surface plasmon plaritons,SPPs) 的P-偏振光和作为参考光的S-偏振光的相位差,实现单光路干涉。通过可寻址的微镜阵列(micro-mirror array,MMA) 实现棱镜二维表面的定点相位 探测。该系统能够以接近单个MMA像素的空间分辨率(水平/垂直为7.64 μm或对角线为10.8 μm)探测相移信息,从而实现单光路、高精度、多通道的二维等离子共振相移探测,为原位生物传感器和突破衍射极限的相位成像提供新的实验思路。  相似文献   

20.
表面等离子体共振(SPR)薄膜传感器的研究   总被引:1,自引:0,他引:1  
利用自制的棱镜型表面等离子共振(SPR)传感器,在固定入射光波长632+8nm激光入射下,被测样品为空气,研究了金属薄膜分别为Al膜、Ag膜及Au膜时的反射光功率与入射角之间的关系,讨论了Al薄膜厚度对表面等离子共振灵敏度的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号