首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 75 毫秒
1.
基于种子自扩展的命名实体关系抽取方法   总被引:6,自引:0,他引:6       下载免费PDF全文
何婷婷  徐超  李晶  赵君喆 《计算机工程》2006,32(21):183-184,193
命名实体间关系的抽取是信息抽取中的一个重要研究问题,该文提出了一种从大量的文本集合中自动抽取命名实体间关系的方法,找出了所有出现在同一句子内、词语之间的距离在一定范围之内的命名实体对,把它们的上下文转化成向量。手工选取少量具有抽取关系的命名实体对,把它们作为初始关系的种子集合,通过自学习,关系种子集合不断扩展。通过计算命名实体对和关系种子之间的上下文相似度来得到所要抽取的命名实体对。通过扩展关系种子集合的方法,抽取的召回率和准确率都得到了提高。该方法在对《人民日报》语料库的测试中,取得了加权平均值F-Score为0.813的效果。  相似文献   

2.
王勇超 《计算机应用研究》2021,38(4):1004-1007,1021
针对现有实体和关系联合抽取方法中存在的实体与关系依赖建模不足、实体发生重叠难以抽取其所涉及的多个关系的问题,设计了基于深度学习的联合抽取框架。首先针对依赖建模不足问题,从预训练语料中提取实体共现特征,建模了实体间的潜在语义关系和实体与关系之间的依赖关系。其次提出了新颖的指针标注方法,该标注方法可以通过指针表示关系类别,由于任一实体可以被多个指针指向,所以可以在一段文本中标注重叠的实体并抽取多个实体—关系三元组结果。最后,为了有效利用单词的丰富语义和指针之间依赖的信息,设计了一个标签感知注意力机制,融合了包括来自编码层的字词信息、相关的共现语义信息。与研究中前沿的联合提取方法相比,该方法在百度DuIE测试集上实现了F1值的增加。通过实验结果表明指针标注方法在一定程度上可以解决实体重叠问题。  相似文献   

3.
刘雅璇  钟勇 《计算机应用》2021,41(9):2517-2522
实体关系抽取是构建大规模知识图谱及各种信息抽取任务的关键步骤.基于预训练语言模型,提出基于头实体注意力的实体关系联合抽取方法.该方法采用卷积神经网络(CNN)提取头实体关键信息,并采用注意力机制捕获头实体与尾实体之间的依赖关系,构建了基于头实体注意力的联合抽取模型(JSA).在公共数据集纽约时报语料库(NYT)和采用远...  相似文献   

4.
电子病历中包含着医疗领域的丰富知识,对于医疗健康信息服务有着重要的意义。其中的概念实体之间的关系是医疗知识的重要组成部分,对于获取医疗领域中疾病、治疗、检查之间关系有着重要的意义。针对于电子病历中文本结构稀疏的特点,原有的基于词的特征表示效果有限,所以从特征选择的角度出发,提出了一种基于深度学习的特征学习,将有限的上下文特征进行进一步抽象表示的方法。实验中使用深度稀疏自动编码来对实体上下文的向量表示进行再表示,来得到更抽象和更有识别意义的特征。实验表明,本文使用的深度学习进行特征的再表示方法对于识别的召回率对比于基线实验有比较明显的提高。  相似文献   

5.
随着生命科学技术的发展,生物医学领域文献呈指数级增长,如何从海量文献中挖掘、抽取有价值的信息成为生物医学领域新的研究契机。作为信息抽取的核心技术,命名实体识别和关系抽取成为生物医学文本挖掘的基础和关键,其主要工作为识别生物医学文本中的实体,并提取实体间存在的生物医学语义关系。当前深度学习技术在各领域自然语言处理任务中取得了长足的发展,旨在总结基于神经网络的生物医学实体识别和关系抽取的方法,从概念、进展、现状等多角度全面阐述各项技术在生物医学领域的发展历程,进一步明确生物医学文本信息抽取工作的探索方向。  相似文献   

6.
在自然语言处理领域,信息抽取一直以来受到人们的关注.信息抽取主要包括3项子任务:实体抽取、关系抽取和事件抽取,而关系抽取是信息抽取领域的核心任务和重要环节.实体关系抽取的主要目标是从自然语言文本中识别并判定实体对之间存在的特定关系,这为智能检索、语义分析等提供了基础支持,有助于提高搜索效率,促进知识库的自动构建.综合阐述了实体关系抽取的发展历史,介绍了常用的中文和英文关系抽取工具和评价体系.主要从4个方面展开介绍了实体关系抽取方法,包括:早期的传统关系抽取方法、基于传统机器学习、基于深度学习和基于开放领域的关系抽取方法,总结了在不同历史阶段的主流研究方法以及相应的代表性成果,并对各种实体关系抽取技术进行对比分析.最后,对实体关系抽取的未来重点研究内容和发展趋势进行了总结和展望.  相似文献   

7.
基于指挥信息系统的作战文书智能处理是未来指挥智能化的基础,采用自然语言处理的方法从非结构化作战文书中抽取出结构化的作战数据对于辅助指挥员决策有着重要意义。其中作战文书实体之间的语义关系是战场态势理解的基础,对于获取对抗双方中作战编成、部署位置、目标状态、指挥关系具有重要价值。针对作战文书实体关系抽取中传统方法人工构建特征不充分、军事领域中文分词不准确、输入与输出之间的相关性考虑不足等问题,笔者提出了基于深度学习的关系抽取方法。结合双向长短时记忆(Bi-directional Long Short-Term Memory,Bi-LSTM)神经网络对较长句子上下文的记忆能力、字向量(Character embedding)对汉字语义的表示能力和注意力机制(Attention Mechanism,Att)对输入与输出相关性的学习能力,构建了Character+Bi-LSTM+ Attention实体关系抽取模型。为验证方法的有效性,在学员训练文书语料集上进行了实验,实验结果表明,该方法抽取效果较传统方法有进一步提高。  相似文献   

8.
陈佳沣  滕冲 《计算机应用》2019,39(7):1918-1924
针对现有的基于远程监督的实体和关系抽取方法存在着标签噪声问题,提出了一种基于强化学习的实体关系联合抽取方法。该模型有两个模块:句子选择器模块和实体关系联合抽取模块。首先,句子选择器模块选择没有标签噪声的高质量句子,将所选句子输入到实体关系联合抽取模型;然后,实体关系联合抽取模块采用序列标注方法对输入的句子进行预测,并向句子选择器模块提供反馈,指导句子选择器模块挑选高质量的句子;最后,句子选择器模块和实体关系联合抽取模块同时训练,将句子选择与序列标注一起优化。实验结果表明,该模型在实体关系联合抽取中的F1值为47.3%,与CoType为代表的联合抽取模型相比,所提模型的F1值提升了1%;与LINE为代表的串行模型相比,所提模型的F1值提升了14%。结果表明强化学习结合实体关系联合抽取模型能够有效地提高序列标注模型的F1值,其中句子选择器能有效地处理数据的噪声。  相似文献   

9.
生物医学实体关系抽取是生物医学文本挖掘领域的一项重要任务,它可以自动从生物医学文本中挖掘实体间的相互关系。目前,生物医学实体关系抽取方法一般只针对某一特定任务(如药物关系,蛋白质交互关系抽取等)训练单任务模型进行抽取,忽略了多个任务之间的相关性。因此,该文使用基于神经网络的多任务学习方法对多个生物医学关系抽取任务间的关联性进行了探索。首先构建了全共享模型和私有共享模型,然后在此基础上提出了一种基于Attention机制的主辅多任务模型。在生物医学领域关系抽取的5个公开数据集上的实验结果表明,该文的多任务学习方法可以有效地在学习任务之间共享信息,使得任务间互相促进,获得了比单任务方法更好的关系抽取结果。  相似文献   

10.
深度学习实体关系抽取研究综述   总被引:3,自引:0,他引:3  
实体关系抽取作为信息抽取、自然语言理解、信息检索等领域的核心任务和重要环节,能够从文本中抽取实体对间的语义关系.近年来,深度学习在联合学习、远程监督等方面上的应用,使关系抽取任务取得了较为丰富的研究成果.目前,基于深度学习的实体关系抽取技术,在特征提取的深度和模型的精确度上已经逐渐超过了传统基于特征和核函数的方法.围绕有监督和远程监督两个领域,系统总结了近几年来中外学者基于深度学习的实体关系抽取研究进展,并对未来可能的研究方向进行了探讨和展望.  相似文献   

11.
在生物医学文本挖掘领域,生物医学的命名实体和关系抽取具有重要意义.然而目前中文生物医学实体关系标注语料十分稀缺,这给中文生物医学领域的信息抽取任务带来许多挑战.该文基于深度学习技术搭建了中文生物医学实体关系抽取系统.首先利用公开的英文生物医学标注语料,结合翻译技术和人工标注方法构建了中文生物医学实体关系语料.然后在结合...  相似文献   

12.
关系抽取作为信息抽取领域的重要研究课题, 其主要目的是抽取句子中已标记实体对之间的语义关系, 对句子语义理解及知识库构建有着重要作用. 针对现有抽取方法中未能充分利用单词位置信息和实体间的交互信息导致重要特征丢失的问题, 本工作提出一种基于位置编码与实体交互信息的关系抽取方法(BPI-BERT). 首先将新型位置编码融入BERT预训练语言模型生成的词向量中后使用平均池化技术得到实体和句子向量, 再利用哈达玛乘积构造实体交互信息, 最后将实体向量、句子向量及交互信息向量拼接得到关系向量并输入到Softmax分类器进行关系分类. 实验结果表明BPI-BERT在精准率和 F1上较现有方法有提高, 证明了BPI-BERT的有效性.  相似文献   

13.
化学物与蛋白质之间的相互作用关系抽取对精准医学和药物发现等方面的研究有着重要作用.该文提出了一种基于最短依存路径和注意力机制的双向LSTM模型,并将其应用于化学物蛋白质关系抽取.在特征上综合考虑了最短依存路径上的词性、位置和依存关系类型等.在BioCreative VI CHEMPROT任务上的实验表明,该方法在基于依...  相似文献   

14.
面向法律文本的实体关系联合抽取技术对于案情关键信息的智能提取至关重要,是智慧司法领域应用中的重要环节。目前的联合抽取方法虽然已经在特定罪名案件的数据集上取得了较好的效果,但是由于模型在训练时只关注了特定罪名类型文本数据的特点,使得模型的泛化能力有限,在应用到多罪名案件的情况下常常使得模型的效果下降。因此引入多任务学习的方法对多罪名情形下的实体关系联合抽取进行了研究,以涉毒类案件和盗窃类案件两大类罪名的文书数据为基础,构建了一个罪名分类任务作为联合抽取的辅助任务,通过基于特征筛选的动态加权多任务模型同时对两个任务进行学习,在单任务模型的基础上整体F1值提升了2.4个百分点,在涉毒类案件和盗窃类案件上的F1值分别提升了1.6和3.2个百分点。  相似文献   

15.
作为信息抽取任务中极为关键的一项子任务,实体关系抽取对于语义知识库的构建和知识图谱的发展都有着重要的意义。对于中文而言,语义关系更加复杂,实体关系抽取的作用也就愈加显著,因此,对中文实体关系抽取的研究方法进行详细考察极为必要。本文从实体关系抽取的产生和发展开始,对目前基于中文的实体关系抽取技术现状作了阐述;按照关系抽取方法对语料的依赖程度分为4类:有监督的实体关系抽取、无监督的实体关系抽取、半监督的实体关系抽取和开放域的实体关系抽取,并对这4类抽取方法进行具体的分析和比较;最后介绍深度学习在中文实体关系抽取上的应用成果和发展前景。  相似文献   

16.
开放关系抽取(Open Relation Extraction, OpenRE)旨在从开放域语料库中抽取关系事实。大多数OpenRE方法通常局限于无监督方法提取命名实体之间的关系模式,然后将语义等价的模式聚类成一个关系簇,但由于缺少监督信息且聚类精度较低,影响了最终的关系抽取效果。为了进一步提高聚类性能,该文提出一种无监督集成聚类框架(Unsupervised Ensemble Clustering,UEC),它将无监督集成学习与基于信息度量的多步聚类算法相结合自主创建高质量伪标签,并以此作为监督信息改进关系特征的学习,从而引导聚类过程,获得更好的标签质量,最后通过多次迭代聚类发现文本中的关系类型。在FewRel和NYT-FB数据集上的实验结果表明,该文方法优于其他主流的基线OpenRE模型,F1值分别达到了65.2%和67.1%。  相似文献   

17.
无指导的中文开放式实体关系抽取   总被引:1,自引:0,他引:1  
传统的实体关系抽取需要预先定义关系类型体系,然而定义一个全面的实体关系类型体系是很困难的.开放式实体关系抽取技术解决了预先定义关系类型体系的问题,但是在中文上的研究还比较少.提出面向大规模网络文本的无指导开放式中文实体关系抽取方法,首先使用实体之间的距离限制和关系指示词的位置限制获取候选关系三元组;然后采用全局排序和类型排序的方法来挖掘关系指示词;最后使用关系指示词和句式规则对关系三元组进行过滤.在获取大量关系三元组的同时,还保证了80%以上的微观平均准确率.  相似文献   

18.
中文实体关系抽取中的特征选择研究   总被引:9,自引:4,他引:9  
命名实体关系抽取是信息抽取研究领域中的重要研究课题之一。通过分析,本文提出将中文实体关系划分为: 包含实体关系与非包含实体关系。针对同一种句法特征在识别它们时性能的明显差异,本文对这两种关系采用了不同的句法特征集,并提出了一些适合各自特点的新的句法特征。在CRF 模型框架下,以ACE2007 的语料作为实验数据,结果表明本文的划分方法和新特征有效的提高了汉语实体关系抽取任务的性能。关键词: 计算机应用;中文信息处理;实体关系抽取;包含关系;非包含关系;特征选择;ACE 评测  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号