首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
使用福坦莫大学无线数据挖掘实验室(WISDM)利用手机采集的人体步态数据集,以支持向量机(SVM)、K最近邻(KNN)和随机森林算法实现对人体步态的识别.对加速度的时间序列进行分窗和均值平滑处理.以2s作为窗口大小,提取三轴加速数据的均值、方差和协方差作为样本特征.采用以上算法对样本的六种类别(步行、慢跑、上楼梯、下楼...  相似文献   

2.
步态识别是一种新的生物特征识别技术,它旨在根据人们走路的姿势进行身份识别本文就远距离人体识别算法以及步态识别所涉及到的运动分割.特征提取,模式识别进行了研究,给出了实验图像。特别对基于模型的步态特征识别和基于人体行走的步态序列特征进行识别两种方法进行了比较和分析。  相似文献   

3.
远距离人体步态识别算法   总被引:1,自引:0,他引:1       下载免费PDF全文
步态识别是一种新的生物特征识别技术,旨在根据人们走路的姿势进行身份识别。该文就远距离人体识别算法及步态识别所涉及的运动分割、特征提取、模式识别进行了研究,给出了实验图像,并比较和分析了基于模型的步态特征识别和基于人体行走的步态序列特征识别这2种方法。  相似文献   

4.
基于步态的身份识别作为一种新的生物特征识别技术,以其非接触、无打扰、远距离、不易伪装等优点成为了生物特征识别技术领域的研究热点。此外,近年来,由于MEMS惯性传感器技术发展成熟及其在便携式设备中的广泛应用,基于惯性传感器的步态身份识别越来越受到科研人员的关注。文中收集整理了国内外有关惯性传感器步态身份识别的研究方法和现状,并对该领域的相关技术进行了回顾;根据识别过程处理的先后顺序,依次回顾了数据采集、数据预处理、数据分割、特征选择与组合、智能识别各个阶段的相关技术以及研究现状,并给出了目前主要的公共步态数据库,以方便感兴趣的读者进行实验分析。最后,在此基础上讨论了基于惯性传感器的步态身份识别的技术难点,并对未来发展方向进行了展望。  相似文献   

5.
提出了一种基于Radon变换特征提取的步态识别算法.该算法根据步态轮廓图下肢的宽度信息确定步态运动准周期性,对二进制准周期步态轮廓序列进行Radon变换构造特征向量模板.对特征向量进行主成分分析,并采用k-近邻法进行步态特征分类.在CASIA步态数据库上和CAS识别算法进行了详细的比较,实验结果表明,该算法在性能上有较大程度的提高,是一种有效的步态识别方法.  相似文献   

6.
步态识别是一种新的生物特征识别技术,它旨在根据人们走路的姿势进行身份识别。本文就远距离人体识别算法以及步态识别所涉及到的运动分割,特征提取,模式识别进行了研究,给出了实验图像。特别对基于模型的步态特征识别和基于人体行走的步态序列特征进行识别两种方法进行了比较和分析。  相似文献   

7.
步态识别是利用人体步行的方式来区分人体身份.近年来,步态作为一种生物特征识别技术已引起了越来越多人们的兴趣.本文从步态识别技术的起源进行讨论,对国际上步态识别技术进行了研究,对主流的识别方法进行分析,对研究步态识别具有指导意义.  相似文献   

8.
对步态识别的国内外研究现状进行了详细的论述;介绍了基于步态识别的身份识别过程,阐述了在步态识别各阶段用到的一些方法;对步态识别的下一步工作进行了探讨。  相似文献   

9.
基于人体动静态特征融合的步态识别算法研究   总被引:1,自引:0,他引:1  
提出一种融合步态运动中人体的静态特征和动态特征的步态识别算法:利用背景减除法得到人体轮廓,通过轮廓图像分段距离来表示静态特征;采用步态图像两脚的步幅和步频来表示动态特征;然后对两种特征进行加法融合、最小值融合、最大值融合和Choquet模糊积分融合。实验表明,两种特征融合后的性能优于基于单个特征步态识别算法,融合后识别率提高了5%到10%。  相似文献   

10.
基于迭代切距离原型学习算法的步态识别   总被引:1,自引:0,他引:1  
作为唯一远程生物认证技术,步态识别一方面越来越受到人们的重视,提出了很多相应的算法,另一方面,它又面临着很多挑战,其难点之一是如何从多帧步态中有效地提取步态特征,针对此问题,并基于步态能量图(GEI)在步态特征表示上的效果,提出了一种迭代切距离原型学习算法,假定各人的步态分布在不同流形上面,首先用切距离改进步态能量图的定义,进而用迭代的方法来解一个最优解问题,从而学习出步态原型图,再通过PCA对步态原形进行特征提取,最后进行识别,证明了该方法的收敛性,实验结果表明所提出的方法取得了比GEl更好的识别率,并证明了步态流形的假设的合理性.  相似文献   

11.
根据人体步态变化特点,提出一种基于特征融合和神经网络的步态识别算法。首先采用时域差分法对运动人体轮廓进行分割,然后分别提取空间特征和频率特征,将两步态特征融合在一起,从而实现步态的分类和识别。在CASIA步态数据库上进行仿真实验,仿真结果表明,该方法不仅克服了单一特征提取方法存在的缺陷,同时提高了步态识别正确率。  相似文献   

12.
步态是一种能够在远距离、非侵犯的条件下识别身份的生物特征,但在实际场景中,步态很容易受到拍摄视角、行走环境、物体遮挡、着装等因素的影响.在跨视角识别问题上,现有方法只注重将多种视角的步态模板转化到固定视角下,且视角跨度的增大加深了错误的累积.为了提取有效的步态特征用于跨视角步态识别,本文提出了一种基于生成对抗网络的跨视角步态特征提取方法,该方法只需训练一个模型即可将步态模板转换到任意视角下的正常行走状态,并最大化地保留原本的身份特征信息,从而提高步态识别的准确率.在CASIA-B和OUMVLP数据集上的实验结果表明,该方法在解决跨视角步态识别问题上具有一定的鲁棒性和可行性.  相似文献   

13.
基于角度特征分量特征的步态识别   总被引:1,自引:0,他引:1  
目前,在步态识别技术中多数描述步态特征的方法在非侧面视角下识别效果一般都不够理想,通常会明显低于侧面视角,针对这一问题,文章提出一种以角度特征分量特征作为步态特征的识别方法,提高步态特征的分类能力从而提高识别率。在步态检测部分文章采用基于色度坐标的混合高斯来抑制阴影和消除噪声,步态识别部分使用支持向量机对所提取的角度特征分量特征进行训练和分类,最终在保证侧面视角识别率的情况下同时提高在非侧面视角下的识别效果。  相似文献   

14.
基于连续隐马尔可夫模型的步态识别   总被引:4,自引:0,他引:4       下载免费PDF全文
步态识别作为一种新的生物特征识别技术,通过人走路的姿势实现对个人身份的识别和认证.算法利用步态轮廓图像边界到重心的距离矢量对步态轮廓图像进行描述,采用步态图像的高宽比进行步态的准周期性分析.利用隐马尔可夫模型进行步态时变数据匹配识别.算法在CMU数据库上进行实验取得了较高的正确识别率.  相似文献   

15.
针对现有的步态识别模型识别准确率不够高、提取特征层次较浅等问题,在步态识别网络GaitSet的基础上,提出一种新的基于改进残差网络的联合损失步态特征识别模型Res-GaitSet。步态作为一种独特而有效的远距离识别生物特征,可以在老年医学评估、社会秩序保障等方面被广泛应用。新网络在特征提取模块中引入残差单元,并采用多个损失函数联合使用的方式,此方法可有效提高步态识别模型的准确性和鲁棒性。实验结果表明,改进后的网络Res-GaitSet在CASIA-B数据集的多个场景和不同识别角度下的准确率均有提升。同时,将改进后的网络用于自建步态数据集,对比于原网络,改进后的网络识别效果在不同角度下也均有提升,充分验证了改进模型的有效性。  相似文献   

16.
为有效抑制观察视角及鞋帽服饰等外界因素的干扰,克服目前常用整体模型步态识别算法的不足,提出将人体轮廓面积特征与支持向量机分类器相结合的识别方法。该方法在步态序列图像的人体轮廓进行提取和规格化,将轮廓图叠加后进行网格式划分,提取轮廓单元模块面积作为步态特征识别参量。使用南佛罗里达大学的步态数据库,分别采用线性、多项式和径向基内核函数对5种不同外界因素条件下的数据进行实验,该方法的正确识别率为82%~100%,且对视角及鞋帽服饰的干扰不敏感,具有更强的鲁棒性。实验表明人体轮廓面积更能反映步态特征,将该面积特征与SVM分类相结合可以获得更好的识别性能。  相似文献   

17.
通过人走路的姿势实现对个人身份的远距离识别和认证是当前生物特征识别研究领域的一个研究热点。算法利用步态轮廓图像边界到重心的距离矢量对步态轮廓图像进行人体运动的静态形状描述,采用连续隐马尔可夫模型对人体运动时从一个动作到另一个动作的过渡进行动态描述。算法在CMU数据库上面进行实验取得了较高的正确识别率。  相似文献   

18.
基于有监督Kohonen神经网络的步态识别   总被引:1,自引:0,他引:1  
表面肌电信号随着时间的变化而改变,这将影响运动模式的分类精度.传统人体下肢假肢运动模式的识别算法不能保证在整个肌电控制时间内达到对运动模式的有效识别.为了解决这些问题,本文提取步态初期200ms的信号的特征值,将无监督和有监督的Kohonen神经网络算法应用到大腿截肢者残肢侧的步态识别中,并与传统BP神经网络进行了对比.结果表明,有监督的Kohonen神经网络算法将五种路况下步态的平均识别率提高到88.4%,优于无监督的Kohonen神经网络算法和BP神经网络.  相似文献   

19.
基于嵌入式隐马尔可夫模型的步态识别   总被引:1,自引:0,他引:1  
针对从多帧步态中更有效提取步态特征的问题,提出了一种基于嵌入式隐马尔可夫模型的步态识别算 法.首先采用背景减除方法提取出人体的侧影轮廓,通过分析轮廓宽度向量的自相关性计算出步态的周期,并得到 平均步态能量图.接着利用二维离散余弦变换获得平均步态能量图的空间特征信息,然后把能量图的观测块转化为 观测向量实现了步态识别.最后运用最近邻法在两个不同的数据库上进行算法验证,实验结果表明该算法具有较好 的识别性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号