首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
导电聚苯胺/纳米铁氧体复合吸波材料具有吸波能力强,质量轻等特点.采用乳液聚合法以苯胺为单体、十二烷基苯磺酸为掺杂剂、过硫酸铵为氧化剂,在超声场下制备导电聚苯胺粉体;将其与纳米Ni0.5Zn0.5Fe2O45及纳米Co0.5Zn0.5Fe2O4一起用原位合成法制备了复合吸波涂层.结果表明:制备的吸波涂层在17.9,15.9,22.3 GHz时分别具有最大反射损耗-10.0,-15.9,-39.9 dB,2种复合涂层拓展了波段,提高了对电磁渡的吸收效果.  相似文献   

2.
用静电纺丝和氢气还原法制备FeCo/SnO_(2)复合纳米纤维并使用X射线衍射、扫描电子显微镜、振动样品磁强计和矢量网络分析仪等手段分析表征其结构、形貌、磁性及电磁特性,研究了SnO_(2)含量对复合纳米纤维的吸波性能的影响。结果表明,添加适量的SnO_(2)可显著提高FeCo纳米纤维的吸波性能。用SnO_(2)摩尔含量为20%的复合纳米纤维制备的厚度仅为1.4 mm的涂层,在频率10.95 GHz处最小反射损耗(RL)为-40.2 dB,有效吸收带宽(RL≤-10 dB)为2.64 GHz (9.75-12.39 GHz),厚度减小到1.0 mm的涂层其最大有效吸收带宽为4.16 GHz,频率范围为13.84~18.00 GHz。涂层吸波性能优异的主要原因,是阻抗匹配的改善、磁性FeCo合金与介电SnO_(2)的电磁损耗协同作用、加强的界面极化驰豫以及纳米纤维形成的三维网络结构产生的多重反射与散射。  相似文献   

3.
本文将固相法制备的磁损耗型Ba0.9Sm0.1Co2Fe16O27铁氧体与电损耗型石墨相结合,通过测试两者的电磁参数,采用YRcomputor软件模拟计算了双层复合吸波涂层的反射率。结果表明:铁氧体/石墨复合吸波涂层在2~8 GHz频段有较好的吸波性能;其中,下层为含量80 wt%的Ba0.9Sm0.1Co2Fe16O27,厚度1.5 mm,上层为10 wt%的石墨,厚度1.5 mm时,该复合涂层表现出优良的微波吸收特性,反射率损耗RL〈-10 dB时,带宽约为3 GHz(3.5~6.5 GHz),最大吸收值约为-27 dB。  相似文献   

4.
采用溶剂热法制备出一种包含BaTiO_3和多壁碳纳米管(MWCNTs)的复合吸波剂.通过透射电镜分析吸波剂的形貌发现:粒径为15~30 nm的BaTiO_3颗粒均匀地包覆在MWCNTs的外壁.电磁波吸收性能分析表明:BaTiO_3/MWCNT纳米复合吸波剂的反射损耗(RL)要大于BaTiO_3和MWCNTs,这是由于其有更好的阻抗匹配和更高的复合磁导率.当单层材料的计算厚度为2mm时,BaTiO_3/MWCNT纳米复合吸波剂的RL在9.6~13.1 GHz的频段中超过了-10dB,同时在10.4 GHz处达到最大值-37.5 dB.为了研究BaTiO_3/MWCNT纳米复合吸波剂与聚丙烯腈(PAN)基体的相容性和其杂化纤维的可纺性,采用静电纺丝成型制备吸波剂含量为10wt%的PAN杂化纤维.通过X射线衍射和扫描电子显微镜分析发现:BaTiO_3/MWCNT纳米复合吸波剂成功与PAN纤维杂化,吸波剂的结构在成型过程中没有变化,吸波剂的添加并未影响纤维形貌.  相似文献   

5.
静电纺丝法制备PAN/Fe3O4磁性纳米纤维   总被引:1,自引:0,他引:1  
采用化学共沉淀法制备纳米四氧化三铁,选用曲拉通X-100为分散剂,利用静电纺丝法制备PAN/Fe3O4磁性纳米复合材料。X射线衍射仪(XRD)验证了四氧化三铁在复合纳米纤维中的存在。同时使用扫描电镜(SEM)和透射电镜(TEM)对复合纳米纤维的微观形貌和Fe3O4在纤维中的分布进行了观察,利用热重(TGA)对纳米复合材料的热稳定性进行分析;通过磁性实验分析了纳米复合材料的磁性性能。结果表明,所制备PAN/Fe3O4磁性纳米纤维成型良好,且Fe3O4磁性颗粒在纤维中分散均匀,其与PAN是物理复合。纳米复合材料具有一定磁性,并可由磁性颗粒的加入量进行控制。  相似文献   

6.
采用静电纺丝法制备了平均直径分别为180 nm和220 nm的BaTiO3(BTO)和Ni0.4Co0.2Zn0.4Fe2O4(NCZFO)纳米纤维, 使用X射线衍射(XRD)、场发射扫描电镜(FESEM)和矢量网络分析仪(VNA)对纤维的物相结构、表面形貌和微波电磁参数进行了表征, 并根据传输线理论分析评估了以BTO和NCZFO纳米纤维为吸收剂的硅橡胶基单层和双层结构吸波涂层在2~18 GHz范围内的微波吸收性能。结果显示, 由于BTO纳米纤维的介电损耗与NCZFO纳米纤维的磁损耗的有机结合和阻抗匹配特性的改善, 以NCZFO纳米纤维/硅橡胶复合体(S1)为匹配层、BTO纳米纤维/硅橡胶复合体(S2)为吸收层的双层吸波涂层比相应单层吸波涂层表现出更为优异的吸收性能。通过调节匹配层与吸收层的厚度, 在4.9~18 GHz范围内反射损耗可达–20 dB以下; 当吸收层和匹配层的厚度分别为2.3 mm和0.5 mm时, 最小反射损耗位于9.5 GHz达–87.8 dB, 低于–20 dB的吸收带宽为5 GHz。优化设计的NCZFO/BTO纳米纤维双层吸波涂层有望发展成为一种新型的宽频带强吸收吸波材料。  相似文献   

7.
曹敏  邓雨希  全鹏  徐康  杨喜  李贤军 《材料导报》2021,35(10):10029-10035
以马尾松木材为原料,使用低温预处理、真空浸注和高温原位生长等手段制备了性能优异的木基多孔炭/铁氧体复合吸波材料(WPC/Fe3 O4),采用XRD、XPS、SEM、VNA等技术对复合材料的物相、成分、形貌和电磁特性等进行表征分析,初步阐述了其吸波机理.结果表明:制备的WPC/Fe3 O4具有优异的吸波性能,其反射损耗峰值达-35.6 dB,有效吸波频带宽超过5.6 GHz,并且在3~4.3 mm厚度范围内均可实现对全部Ku频段电磁波的有效吸收;WPC/Fe3 O4具有规则通直的孔隙结构和丰富的异质界面,高温下Fe3 O4纳米粒子均匀生长于木基多孔炭的孔隙和炭壁中;随着碳化温度的升高,WPC/Fe3 O4的介电常数显著增大而磁导率变化较小;WPC/Fe3 O4的电磁损耗机制主要为导电损耗、磁损耗和界面极化损耗.复合材料表现出对Ku频段电磁波的高效与宽频吸收,有望实现其在电子通讯或目标隐身等微波领域的应用.  相似文献   

8.
在十六烷基三甲基溴化胺(CTAB)存在下,采用原位化学氧化聚合法制备了聚苯胺/Fe3O4网状磁性纳米复合材料,通过改变Fe3O4纳米粒子在聚苯胺(PAn)中的含量获得了电磁性能可调的纳米复合物,采用FT—IR、XRD、SEM、TEM、电导和磁性能测试对复合物进行了表征,通过矢量网络分析仪获得了试样在2—18GHz范围的复介电常数和复磁导率,经计算获得微波反射损耗曲线,发现当样品中Fe3O4的含量为15.8wt%时,在9.0GHz处具有最大的反射损耗-17.1dB,损耗起.过-10dB的频宽为1GHz。  相似文献   

9.
以交联的聚己内酯(c-PCL)作为复合电纺纤维的基体材料,纳米四氧化三铁(Fe3O4)作为添加填料,运用静电纺丝的技术,制备了在交变磁场下回复的形状记忆复合纳米电纺纤维。通过X射线衍射(XRD)、透射电镜(TEM)对制备的Fe3O4纳米颗粒进行了表征;利用扫描电镜(SEM)、差式扫描量热法(DSC)及动态力学分析(DMA)等检测手段对PCL/Fe3O4复合纳米纤维进行了表征。实验表明:粒径为14nm的Fe3O4在电纺丝中均匀分布,制备的复合纳米纤维的转变温度为53℃,在交变磁场中具有较好的形状记忆性能。  相似文献   

10.
采用静电纺丝法结合热处理制备了一种可应用于2~18 GHz频段的高性能轻质微波吸收剂C/Co纳米纤维, 详细研究了金属Co含量对纳米纤维的电磁特性及微波吸收性能的影响。相对于纯碳纳米纤维, C/Co纳米纤维的微波吸收性能得到显著加强, 其主要吸波机制仍是介电损耗。随着Co含量的增加, C/Co纳米纤维的电磁衰减能力逐渐下降, 而微波吸收却先增强后减弱, 含37.8wt% Co的C/Co-5纳米纤维因金属Co粒子和纳米碳纤维的良好结合与协同效应, 以及纤维中特殊的Co粒子@石墨核壳结构所带来的良好阻抗匹配与足够高的电磁衰减能力而表现出最好的吸波性能。模拟计算结果表明, 涂层厚度在1.1~5.0 mm间变化时, 填充5wt% C/Co-5纳米纤维的硅胶吸波涂层的反射损耗(RL)值超过-20 dB的频率范围在3.2~18 GHz, 最小RL值达到-78.8 dB, 其中当涂层厚度仅为1.5 mm时, RL值低于-20 dB的吸收带宽可达6.0 GHz (12~18 GHz)。C/Co纳米纤维优异的微波吸收性能表明, 这些磁性碳杂化纳米纤维有望成为一种极具应用前景的新型吸波材料。  相似文献   

11.
The polyaniline (PAni)/Co0.5Zn0.5Fe2O4 nanocomposite was prepared by an in situ polymerization in an aqueous solution. The products were characterized by Fourier transform infrared (FT-IR) spectrometer, ultraviolet-visible (UV-vis) spectrometer, X-ray diffraction (XRD) and transmission electron microscope (TEM). The average particle size of the PAni/Co0.5Zn0.5Fe2O4 was estimated to be about 70 nm by TEM. The reflection loss (dB) of the nanocomposite was measured at different microwave frequencies in X-band (8.2-12.4 GHz), U-band (12.4-18 GHz) and K-band (18-26.5 GHz) by radar cross-section (RCS) method according to the national standard GJB-2038-94. The results showed the reflection loss of the PAni/Co0.5Zn0.5Fe2O4 nanocomposite was higher than that of the PAni. The maximum reflection loss of the PAni/Co0.5Zn0.5Fe2O4 nanocomposite was about −39.9 dB at 22.4 GHz with a bandwidth of 5 GHz (full frequency width at about a half of the peak response). In conclusion, this sample is a good microwave shielding and absorbing materials at higher frequency.  相似文献   

12.
A novel approach, combining in-situ composite method with electrospinning, was used to prepare high magnetic Fe3O4/poly(vinyl alcohol) (PVA) composite nanofibers. Fe3O4 magnetic fluids were synthesized by chemical co-precipitation method in the presence of 6 wt.% PVA aqueous solution. PVA was used as stabilizer and polymeric matrix. The resulting Fe3O4/PVA composite nanofibers were characterized with field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffractometer (XRD), respectively. These composite fibers showed a uniform and continuous morphology, with the Fe3O4 nanoparticles embedded in the fibers. Magnetization test confirmed that the composite fiber showed a high saturated magnetization (Ms = 2.42 emµ·g-1) although only 4 wt.% content.  相似文献   

13.
Abstract

Preparation condition can affect the structure and the properties of nanofiber membrane. In order to explore suitable conditions to prepare the Fe3O4/PVDF nanofiber membrane with good hydrophobicity, the hydrophobicity of Fe3O4/PVDF nanofiber membranes obtained by electrospinning was investigated by changing preparation conditions like weight percentage of Fe3O4 nanoparticles, blending quality concentration of poly (vinylidene fluoride) (PVDF) and Fe3O4 nanoparticles, and positive voltage. And the variations of hydrophobicity of Fe3O4/PVDF nanofiber membranes modified by 1H, 1H, 2H, 2H-perfluorodecyl trimethoxysilane were studied. The results show that the hydrophobicity of Fe3O4/PVDF nanofiber membranes has changed under different preparation conditions. The contact angles of samples increased after a modification by 1H, 1H, 2H, 2H-perfluorodecyl trimethoxysilane, which indicates that the hydrophobicity of Fe3O4/PVDF nanofiber membranes has been enhanced.  相似文献   

14.
Al2O3/Nb composite coatings were sprayed on graphite substrates by low power atmospheric plasma spraying (LPAPS) with an internally fed powder torch. The composite particles were agglomerated with different mass fractions by spray-drying technology. The microstructure and dielectric properties of coatings were investigated. The microstructure of composite coatings shows a uniform dispersion of metal particles in the composite coatings. Both the real (?′) and imaginary (?″) parts of the complex permittivity increase with increasing Nb content over the frequency range of 8.2-12.4 GHz, which is ascribed to space charge polarization and conductance loss, respectively. By calculating the microwave-absorption as a single-layer absorber, reflection loss values exceeding −10 dB can be obtained in the frequency range of 10.0-11.8 GHz with 10 wt% Nb content coating when the coating thickness is 1.5 mm.  相似文献   

15.
Fe3O4/carbon composite nanofibers were prepared by electrospinning polyacrylonitrile (PAN)/acetyl acetone iron (AAI)/dimethyl formamide (DMF) solution, followed by stabilization and carbonization. SEM and TEM observations reveal that the fibers are lengthy and uniform, and are loaded with well-distributed Fe3O4 nanoparticles, which are evidenced by XRD. Electrical and magnetic properties of the samples were studied to show the effect of enhancement of electrical conductivity and magnetic hysteresis performance. Finally, the permittivity and permeability parameters were measured by a vector network analyzer, and the reflectivity loss was calculated based on Transmission Line Theory. Results show that Fe3O4/C composite nanofibers exhibit enhanced properties of microwave absorption as compared to those of pure carbon nanofibers by: decreasing reflectivity loss values; widening absorption width and improving performance in low frequency (2–5 GHz) absorption. Absorption properties can be tuned by changing AAI content, carbonization temperature, composite fiber/paraffin ratio and coating thickness. It is shown that with coating thickness of 5 mm and fiber/paraffin ratio of 5 wt.%, the bandwidth for reflection loss under ?5 dB can reach a maximum of 12–13 GHz in the range of 2–18 GHz, accompanying with a minimum reflection loss of ?40 to ?45 dB, and preferred low frequency band absorption can also be obtained. The mechanisms for the enhanced absorption performance were briefly discussed. It is supposed that this kind of composite material is promising for resolving the problems of weak absorption in the low frequency range and narrow bandwidth absorption.  相似文献   

16.
Multiferroic BiFeO3 (BFO) nanoparticles ranging from 60 nm to 120 nm were synthesized successfully by a sol-gel method, and the microwave absorption properties of BFO nanoparticles were investigated in the range of 12.4 GHz to 18 GHz. The reflection loss of BFO nanoparticles is more than 10 dB (or more than 90%) in the 13.1 GHz-18 GHz range and reaches to 26 dB at 16.3 GHz, which indicated that the BFO is a good candidate for microwave absorption application. The excellent microwave absorption properties of BFO nanoparticles could be attributed to the good electromagnetic match as a consequence of the coexistence of ferroelectric and weak ferromagnetic order in BFO nanoparticles, which has been confirmed by electric and magnetic measurement. Moreover, the nanosize-confinement effect may also have contribution to the high reflection loss of BFO nanoparticles.  相似文献   

17.
Fe/SiO2 composite particles were synthesized by hydrogen reduction of Fe2O3/SiO2 precursor, which was prepared by sol-gel method. A reduction temperature higher than 600 °C is required for the complete conversion of Fe2O3 to Fe. Fe/SiO2 composite particles exhibit superior complex permittivity and permeability in the microwave band. A reflection loss higher than − 70 dB as well as a broad absorption band can be simultaneously obtained for Fe/SiO2-based coatings about 2 mm in thickness, suggesting that the Fe/SiO2 composite particles are a promising candidate for high performance electromagnetic absorption materials.  相似文献   

18.
Multiwalled carbon nanotubes (MWCNTs)/Fe3O4 nanocomposites were synthesized via a simple low temperature solution method. The phase structures and morphologies of the composite were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the Fe3O4 spheres of about 150 nm were linked with MWCNTs. The microwave absorption properties of the MWCNTs/Fe3O4 nanocomposites were measured by vector network analysis (VNA). A wide region of microwave absorption was achieved due to dual magnetic and dielectric losses. When the matching thickness is 2 mm, the reflection loss (RL) of the sample exceeding ?10 dB was obtained at the frequency range of 9.9–12.4 GHz, with an optimal RL of ?29.8 dB at 11.04 GHz. A possible mechanism of the improved microwave absorption properties of the composites was discussed.  相似文献   

19.
Polyaniline (PANI)/CoFe2O4/Ba3Co2Fe24O41 composite was prepared by an in-situ polymerization method. The phase structure, morphology and magnetic properties of the as-prepared PANI/CoFe2O4/Ba3Co2Fe24O41 composite were characterized by XRD, FT-IR, SEM, TEM, and VSM, respectively. The microwave absorption properties of the composite were investigated by using a vector network analyzer in the 2–18 GHz frequency range. The results show that the maximum reflection loss value of the PANI/CoFe2O4/Ba3Co2Fe24O41 composite reaches ?30.5 dB at 10.5 GHz with a thickness of 3 mm and the bandwidth of reflection loss below ?10 dB reaches up to 1.2 GHz. The excellent microwave absorption properties of the as-prepared PANI/CoFe2O4/Ba3Co2Fe24O41 composite due to the enhanced impedance match between dielectric loss and magnetic loss.  相似文献   

20.
The microwave absorption properties of the nanocrystalline NiZn ferrite (Zn0.5Ni0.5Fe2O4) and iron (α-Fe) microfibers with single-layer and double-layer structures were investigated in the frequency range of 2–18 GHz. The double-layer absorbers have much better microwave absorption properties than the single-layer absorbers, and the microwave absorption properties of the double-layer structure are influenced by the coupling interactions between the absorbing layer and matching layer. With the absorbing layer thickness 0.7 mm of α-Fe microfibers–wax composite and the matching layer thickness 1.5 mm of Zn0.5Ni0.5Fe2O4 microfibers–wax composite, the minimum reflection loss (RL) reaches about −71 dB at 16.2 GHz and the absorption band width is about 9.2 GHz ranging from 8.8 to 18 GHz with the RL value exceeding −10 dB. While, when the absorbing layer is the Zn0.5Ni0.5Fe2O4 microfibers–wax composite with thickness 1.8 mm and the matching layer is the α-Fe microfibers–wax composite with thickness 0.2 mm, the RL value achieves the minimum about −73 dB at 13.8 GHz and the absorption band width is about 10.2 GHz ranging from 7.8 to 18 GHz with the RL value exceeding −10 dB, which covers the whole X-band (8.2–12.4 GHz) and Ku-band (12.4–18 GHz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号