首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
陶桂兰  习宇  杨铭元 《水电能源科学》2013,31(11):140-143,254
以江苏国华镇江港全直桩码头结构段为研究对象,针对全直桩码头的结构特点,基于《水运工程抗震设计规范》中的抗震计算方法,采用动力弹塑性分析方法和静力弹塑性分析方法,计算得到了码头结构的基底剪力—桩顶位移关系曲线、桩顶最大位移、塑性铰分布。结果表明,利用两种方法计算得到的基底剪力—桩顶位移曲线相关不明显;利用动力弹塑性方法得到的桩顶最大位移与利用静力弹塑性方法得到的性能点目标位移相差不大;两种方法分析得到的塑性铰位置分布相接近,即塑性铰主要分布在桩底和桩顶,并首先出现在陆侧桩底,然后向海侧发展,但利用静力弹塑性方法得到的塑性铰较多,分析结果偏保守。  相似文献   

2.
海上风力机结构体系长期经受波浪、风等水平循环荷载的作用,循环荷载的长期作用会引起桩周地基土体产生棘轮效应及形成密实沉陷区,研究长期循环荷载效应对风力机单桩承载特性的影响规律具有重要的工程意义。基于有限差分软件FLAC3D计算平台,建立风力机单桩的数值计算模型,与既有桩基试验开展对比验证模型的有效性;随后引入长期循环荷载效应引起的桩周密实沉陷简化模型,开展海上风力机大直径单桩的承载性能对比研究,探讨考虑与未考虑密实沉陷区时桩基的变形、弯矩、p-y(土体抗力-桩基水平位移)曲线的差异,分析长期循环荷载效应对桩基承载特性的影响规律。结果表明,密实沉陷对单桩的刚性转动点位置基本无影响,但在桩基埋置的浅层区域,桩周密实沉陷区对桩基水平位移影响显著,且引起桩基弯矩发生突变。  相似文献   

3.
为研究地震动强度对钢管桩码头结构耗能特性的影响,分析了江苏省某钢管桩码头排架在不同地震峰值加速度下的能量耗散特性,选取与抗震规范加速度反应谱符合程度较好的两条实际地震波和一条人工波作为设计地震动,采用循环荷载作用下的p-y土弹簧模拟桩土相互作用。计算结果表明,在地震动峰值加速度确定的条件下,根据所提方法选择的三条地震波输入结构的总能量大小比较接近;地震作用下,钢管桩码头结构主要耗能形式是阻尼耗能,占比高于80%,滞回耗能占比较小,说明结构损伤程度较低,抗震性能较好;大震情况下损伤主要发生在陆侧第一根桩基,入土深度对桩基滞回耗能分配有较大影响。  相似文献   

4.
桩基-重力式复合结构是一种能充分发挥高桩结构和重力式结构优点的新型开敞式深水码头结构型式,为分析波浪荷载作用下该结构的动力响应,利用ABAQUS建立模型,分析了沉箱高度为17、19、21m的桩基-重力式靠船墩的模态特性和波浪荷载下复合结构的上部墩台和中部桩柱的动力响应。结果表明,上部墩台和中部桩柱的位移响应随沉箱高度的增加而减小,墩台加速度响应则呈相反趋势;沉箱高度为17、19m时最大弯矩峰值发生在桩与沉箱的相交位置附近,沉箱高度为21m时最大弯矩峰值出现在桩与墩台的相交位置,不同沉箱高度时最大主应力峰值均发生在桩与沉箱的相交位置。研究结果可为桩基-重力式复合结构的应用提供参考。  相似文献   

5.
为了进一步明确平面形状不规则对高桩码头地震效应的影响,以L型平面不规则高桩码头为例,基于美国Northridge地震波,采用ABAQUS有限元软件对比分析了平面形状不规则与规则高桩码头的地震反应,研究了平面形状不规则对高桩码头各桩桩顶水平力、弯矩及结构整体扭转角的影响。结果表明,高桩码头平面形状不规则会导致桩顶水平力和结构整体扭转角的增大,桩基地震破坏数目增加;平面形状不规则高桩码头转角部位桩群水平力峰值普遍较大,且应力复杂,设计中需重点考虑。  相似文献   

6.
现阶段高挡墙桩基设计时一般不计入护底的受压作用,而是假定水平荷载均由桩基承担,导致布桩数量过多、设计偏于保守。为了优化桩基布置,基于位移协调一致原理,提出了一种考虑护底与桩基联合承受水平荷载的设计方法。分别采用联合承载计算方法和三维有限元法对实际泵站工程进行计算,并利用实际监测资料对计算结果进行验证。结果表明,高挡墙考虑护底受压后,约90%的水平荷载由护底承担,群桩的水平荷载很小,故设计时宜以满足竖向承载力为优先条件,适当减少布桩数量。  相似文献   

7.
桩在水平荷载作用下的内力与位移计算,桩基设计规范推荐使用m法。m法的缺点是,当为了显著增大桩的水平承载力而在靠近承台的区域将土进行换填时,该处的土实际的刚度与其假定相距甚远。采用2K法进行水平荷载作用下桩的内力与变形分析,重点把握土的两个侧向弹簧刚度。2K法在工程中的应用是广泛的:承台附近土换填或加固,或将桩顶附近弯矩较大的桩身部分设为更大的直径,上段桩土弹簧刚度将增大,在一定的水平荷载作用下,桩顶位移将减小,桩的水平承载力得到提高而节省工程造价;如果在计算模型中未建立桩单元而欲求得桩顶反力,则采用变直径桩解析分析获得的位移函数和内力函数可计算桩的内力用于配筋;对于箱型基础、大型筏板基础,可较为精确地考虑其对桩顶的嵌固作用而提高桩的水平承载力;上部结构的刚度使得桩顶部有侧向支撑,桩身弯矩变小,也可优化桩基设计;对于桩基上的动力机器和块式基础,可以认为块式或承台是上段大直径桩,由此获得的上段桩侧向土弹簧刚度将非常可观,可用于优化桩基设计。如果考虑将桩建入计算模型,可以通过本方法得出的四个刚度参数输入到弹簧支座刚度矩阵中,能够节省桩建模及其内部单元带来的大自由度,计算模型更容易维护,其这也是一体化建模发展过程中的一个重要里程碑。  相似文献   

8.
针对光伏支架螺旋桩斜向荷载作用下承载特性认识不足,在砂土中开展大尺寸单锚片螺旋桩斜向拉拔载荷试验,研究荷载角度、埋深比对承载特性的影响规律,探究锚片表面的土压力强度分布变化规律,分析斜向拉拔承载控制机理。研究表明:1)荷载位移曲线一般表现为硬化型,荷载角度相同时,埋深比越大,拉拔极限荷载与相应位移均越大。埋深比相同时,荷载角度增加,曲线更显陡峭,极限荷载增大,极限位移则减小。2)分解后的荷载-水平位移曲线和荷载-竖向位移曲线特征差异显著,前者曲线完整、非线性发展充分。除竖向拉拔外,其他拉拔角度下竖向极限位移均远小于水平极限位移。3)斜向拉拔承载力TU(a)与对应埋深比竖向拉拔承载力Tu(90°)之比与荷载角度之间具有很好的线性关系。4)锚片上的土压力强度均受两种锚土相互作用机制共同影响,最大土压力强度系数与埋深比和土体内摩擦角有关,可达被动土压力强度系数的近两倍。5)荷载角度[0°,65°],螺旋桩斜向拉拔承载性状由水平方向控制,在[65°,90°]则由竖直方向控制。斜向荷载竖向分量可提高螺旋桩水平方向的承载力,但在设计判别时可将其视为安全储备不予考虑。  相似文献   

9.
结合江苏响水海上风电场2 m桩径钢管桩水平试验工程,以ANSYS有限元软件为平台建立海上风力机钢管桩的单桩基础模型,根据设计提供土层参数,采用API规范建议的p-y曲线法、港口工程桩基规范的m法和m折减法进行水平承载力计算,与实测的桩顶荷载-位移曲线、桩身变形和弯矩曲线进行对比分析,结果表明,API(American Petroleum Institute)规范建议的p-y曲线计算结果偏于安全,m法和m折减法偏于不安全,总体上m折减法与实测值更接近。上述几种分析方法的对比研究尚需更多的试验数据和计算分析工作。  相似文献   

10.
为研究水平往复荷载下砂性地基预应力高强混凝土(PHC)管桩的抗震性能,采用有限元软件ABAQUS建立三维PHC管桩-砂土模型进行非线性分析。通过对比有限元分析结果和试验结果,验证了该模型的可靠性。通过在桩顶施加水平往复荷载,利用该有限元模型分析了PHC管桩滞回特性、位移延性、耗能能力和累积损伤,研究了轴压比、入土深度、砂土内摩擦角和孔隙比等因素对PHC管桩抗震性能的影响。计算结果表明,水平往复荷载下PHC管桩和桩周砂土逐渐产生塑性且塑性区逐渐扩大;减小轴压比或砂土孔隙比、增大入土深度或砂土内摩擦角均可改善砂性地基中PHC管桩的位移延性和耗能能力,降低PHC管桩的累积损伤,提高PHC管桩抗震性能;轴压比是影响PHC管桩抗震性能的重要因素。研究成果可为PHC管桩码头抗震设计提供参考。  相似文献   

11.
参照美国码头工程抗震设计标准,确定了高桩码头结构正常使用极限状态、损伤控制极限状态和不倒塌极限状态对应的材料极限应变限值,应用纤维模型法对高桩码头所采用的PHC管桩进行了截面弯矩—曲率分析。根据三种设计极限状态下材料的应变限值,计算确定了PHC管桩相应的截面曲率,讨论了不同轴压比和纵向配筋率对极限状态下桩截面曲率的影响,并考虑轴压比、纵向配筋率和管桩截面直径三个因素,对截面曲率进行拟合,获得了各设计极限状态下PHC管桩截面曲率计算回归公式。算例分析表明,该拟合公式可为基于位移的高桩码头抗震设计提供参考  相似文献   

12.
风力机桩基、塔架及连接部件构成的支撑结构属顶部承担较大质量的力学结构,地震对其造成的影响远大于常规建筑.针对上述问题,基于NREL开发计算平台,联合TurbSim、AeroDyn、FAST及Seismic,对变风载荷、变地震载荷(波形、强度)下的风力机动力学响应进行研究.发现:地震横波对风力机结构响应造成剧烈影响,纵波...  相似文献   

13.
针对沿海地区深厚淤泥地基上新建海堤对交叉段沿海跨海大桥负摩阻力影响的问题,基于大型有限元计算软件,首先研究了海堤结构、桥梁结构的先后施工次序,提出采用先堤后桥的施工顺序,并分别取土石堤至桥墩桩基之间距离为50、100、150、200、250m进行计算,发现当土石堤至桥墩桩基之间距离为150m时,桥墩水平变位10mm、竖向变位18.3mm、桥桩最大拉应力0.7 MPa,均满足相关规范要求,即对大桥桥墩两侧各150m范围内采用特殊的桩基框架肋板结构海堤衔接,最后通过分析实际沉降监测资料数据,认为该结构保证了大桥的整体安全,达到了预期效果。  相似文献   

14.
为更精确研究桁架式大型海上风力机在地震载荷作用下的结构动力学响应,建立桩土模型,描述土体物理性质与桩-土间的相互作用,以桁架式支撑结构的美国可再生能源实验室(NREL)5 MW海上风力机为研究对象,建立有限元模型并分析在湍流风与地震联合作用下的动力学响应。结果表明:相较于湍流风,地震作用对桁架式海上风力机动力学响应的影响更加剧烈;地震导致塔顶位移显著增大;桁架结构与塔架的连接处存在Mises应力积聚,且在地震影响下其更为严重;地震对桩基的运动状态产生显著影响,位移最大值出现在桩底。  相似文献   

15.
以超大型DTU 10 MW单桩式近海风力机为研究对象,通过p-y曲线和非线性弹簧建立桩-土耦合模型,选取Kaimal风谱模型建立湍流风场,基于P-M谱定义不同频率波浪分布,并利用辐射/绕射理论计算波浪载荷,采用有限元方法对不同海况下单桩式风力机进行动力学响应、疲劳及屈曲分析。结果表明:不同海况波浪载荷作用下塔顶位移响应及等效应力峰值远小于风及风浪联合作用,其中风浪联合作用下风力机塔顶位移响应及等效应力略小于风载荷;波浪载荷对风载荷引起的单桩式风力机动力学响应具有一定抑制作用,此外相较于波浪载荷,风载荷为控制载荷;风载荷与风浪联合作用下风力机等效应力峰值位于塔顶与机舱连接处,波浪载荷风力机等效应力峰值位于支撑结构与桩基连接处;仅以风载荷预估风力机塔架疲劳寿命将导致预估不足;随着波浪载荷的增大,风力机失稳风险加大,波浪载荷不可忽略;不同海况下,风浪联合作用局部屈曲区域位于塔架中下端,在风力机抗风浪设计时,应重点关注此处;变桨效应可大幅降低风力机动力学响应、疲劳损伤及发生屈曲的风险。  相似文献   

16.
[目的]江苏省主要风电工程位于岸外辐射沙洲海域,研究该地层大直径单桩承载性能具有重要意义.[方法]基于辐射沙洲钢管桩试桩试验,建立单桩基础FLAC3D数值模型,开展不同直径钢管桩基础承载性能数值模拟研究.[结果]结果表明:FLAC3D数值模拟所得钢管桩桩顶的竖向荷载-位移曲线(Q-s曲线)与实测曲线变化趋势基本一致;随...  相似文献   

17.
李威  周文杰 《太阳能学报》2022,43(6):219-225
海上风电属变形敏感结构,而导管架基础海上风电结构在服役期内下部桩基础会承受较大竖向循环荷载。在竖向受荷桩基的分析与计算中,采用ABAQUS分析桩端影响区域,依据动三轴实验中砂土的应变累积特性,提出一种新型Q-z模型。与传统Q-z模型比较,该模型能通过不同参数取值,模拟在轴向循环荷载下桩端的位移累积。结合有限元软件COMSOL进行二次开发,模拟单桩轴向循环加载工况,与离心机实验进行对比,验证了该Q-z模型的合理性。在数值计算中分别采用美国石油学会(API)规范系列桩土相互作用模型(p-y)、可考虑桩-土界面强度和刚度循环弱化效应的弹塑性t-z模型,可描述桩端位移累积的新型Q-z模型,分析海上升压站在循环荷载下的响应规律,为海上升压站设计提供相应的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号