首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the performance of a Ku‐band 5‐bit monolithic phase shifter with metal semiconductor field effect transistor (MESFET) switches and the implementation of a ceramic packaged phase shifter for phase array antennas. Using compensation resistors reduced the insertion loss variation of the phase shifter. Measurement of the 5‐bit phase shifter with a monolithic microwave integrated circuit demonstrated a phase error of less than 7.5° root‐mean‐square (RMS) and an insertion loss variation of less than 0.9 dB RMS for 13 to 15 GHz. For all 32 states of the developed 5‐bit phase shifter, the insertion losses were 8.2 ± 1.4 dB, the input return losses were higher than 7.7 dB, and the output return losses were higher than 6.8 dB for 13 to 15 GHz. The chip size of the 5‐bit monolithic phase shifter with a digital circuit for controlling all five bits was 2.35 mm × 1.65 mm. The packaged phase shifter demonstrated a phase error of less than 11.3° RMS, measured insertion losses of 12.2 ± 2.2 dB, and an insertion loss variation of 1.0 dB RMS for 13 to 15 GHz. For all 32 states, the input return losses were higher than 5.0 dB and the output return losses were higher than 6.2 dB for 13 to 15 GHz. The size of the packaged phase shifter was 7.20 mm × 6.20 mm.  相似文献   

2.
This paper presents wideband compact differential reflective phase shifter based on the double layer slot-coupled coupler configuration. This novel phase shifter arrangement consists of a 3-dB hybrid coupler with the coupled and transmission ports terminated with rectangular and elliptically shaped microstrip loads. By altering the ports termination of the coupler, phase shifters propose differential phase ranging from −90° to +90° over 1.3–5.9G Hz frequency band. To achieve different range of phase performance, the proper reactance is calculated at the outputs of coupler. These reactances are transformed to the elliptical or rectangular-shaped microstrip load with various dimensions for every phase shifter. The calculation and simulations results show that the developed circuits could provide ±30°, ±60°, ±45° and ±90° differential phase shifts. For verification of this wideband phase shifter design method, two phase shifter example with rectangular and elliptical load termination is fabricated and measured. The measured return loss of the phase shifter with elliptically load is better than 10 dB over 1.3–5.9G Hz frequency band as well as insertion loss is less than 1 dB. The phase shift deviation is less than 2.1°. The results demonstrate that the proposed phase shifters are well suited for use in GPS/LTE/WiMax/WLAN frequency bands.  相似文献   

3.
The design approach and performance of a 22.5°/45°digital phase shifter based on a switched filter network for X-band phased arrays are described. Both the MMIC phase shifters are fabricated employing a 0.25μm gate GaAs pHEMT process and share in the same chip size of 0.82×1.06 mm2. The measurement results of the proposed phase shifters over the whole operating frequency range show that the phase shift error is less than 22.5°±2.5°, 45°±3.5°, which shows an excellent agreement with the simulated performance, the insertion loss is within the range of 0.9-1.2 dB for the 22.5°phase shifter and 0.9-1.4 dB for the 45°phase shifter, and the input/output return loss is better than -12.5 and -11 dB respectively. They also achieve the similar P1dB continuous wave power handing capability of 24.8 dBm at 10 GHz. The phase shifters show a good phase shift error, insertion loss and return loss in the X-band (40%), which can be employed into the wide bandwidth multi-bit digital phase shifter.  相似文献   

4.
该文提出了一种工作于30~32 GHz的毫米波差分移相器,其尺寸为30 mm×18 mm×0.127 mm。该移相器以微带线为基础进行设计,由中心圆环及一对开口谐振环(SRR)共同组成。通过改变中心圆环的半径大小实现在工作频段内的S参数优化。以参考线的输出相位为基准,通过改变开口谐振环半径依次实现22.5°、45°、90°的差分移相。结果表明,在所设计的频段内,该移相器的回波损耗小于-10 dB,插入损耗小于1.4 dB,仿真最大移相误差小于5°。该移相器结构简单,便于制造。通过实物样品测试,验证了其仿真结果的可靠性。  相似文献   

5.
6~18GHz四位数控移相器单片集成电路的设计   总被引:1,自引:0,他引:1  
设计了6~18GHz频带4bitGaAs数字移相器,着重介绍宽带移相单元的设计。该移相器通过ED02AH0.2μm PHEMT工艺实现。最终的单片数字移相器性能如下:在6~18GHz范围内,11.25°移相单元的移相波动小于±2°;22.5°移相单元的移相波动小于±2.5°;45°的移相波动为小于±5°;90°移相单元的移相波动小于±5°。所有状态的移相平坦度小于20°,移相均方差<7°,插入损耗<13dB,两端口所有态的回波损耗<-10dB(典型值)。  相似文献   

6.
A compact broadband planar 90° phase shifter is presented in this letter. By loading the transmission line with M-shaped open stub, the proposed new phase shifter can achieve both compact size and wide bandwidth. Design equations are also given to reveal the key factors that affect the operation bandwidth of the phase shifter. For demonstration, one sample 90° phase shifter is designed, fabricated and measured. Results indicate that the designed phase shifter can realise a wide bandwidth from 2.7 GHz to 6 GHz, referring to a criterion of 6.2° phase deviation.  相似文献   

7.
A Low-Loss Ku-Band Monolithic Analog Phase Shifter   总被引:1,自引:0,他引:1  
A GaAs monolithic Ku-band analog phase shifter integrating 90° branch line coupler with planar varactor diodes has been fabricated for the first time. A phase shift of 109° +- 3° with an insertion loss of 1.8+-0.3 dB was measured from 16 to 18 GHz. A 360° phase shifter with 4.2+-0.9 dB insertion loss was realized in the same frequency range by connecting three phase-shifter chips in series. To our knowledge, this is the lowest insertion loss obtained by a 360° Ku-band phase shifter using monolithic circuits. In addition, hyperabrupt varactors using nonuniform doping profiles increased the phase shift by more than 30° and produced a more linear dependence of phase shift on control voltage.  相似文献   

8.
A field theory method based on the orthogonal expansion into eigenmodes is presented for the design of double dielectric-slab-filled waveguide phase shifters with linearly tapered sections. Prototypes of 90° differential phase shift with reference to a corresponding empty waveguide of the same length achieved typically about +-4° phase error and less than -30-dB input reflection within +-5-percent bandwidth, for WR 102-band (7-11 GHz) through WR 28-band (26.5-40 GHz) waveguides. Design curves for differential phase shifts of 12.25°, 22.5°, 45°, 90°, 180°, and 270° are given. Utilizing the differential phase compensation effect of the dispersive behavior of the dielectric-filled and empty reference waveguides, the phase error is only +-1° within +-8.5-percent bandwidth. Further investigations include composite phase shifters, mechanical lateral displacement, and tolerance influences. An experimental 90° phase shifter for 14-GHz midband frequency shows good agreement between theory and measurements.  相似文献   

9.
通过分析向列型液晶移相器的原理、结构及可以达到的技术指标,指出采用倒置微带结构设计的液晶移相器的移相度可以达到360°,品质因数可以达到12°/dB,而且运行电压只有30 V左右。在此基础上,提出了该种移相器研究中存在的问题以及改进的办法。向列型液晶移相器具有独特的优势和发展潜力,不久的将来会在相控阵雷达以及卫星通讯等领域起到关键作用。  相似文献   

10.
本文报道了一种工作在16.0~17.0GHz单片集成180°的移相器.文中通过对无源工作的GaAs MESFET的建模,分析了影响移相器性能的主要参数,以及这些参数的最佳取值.制作在2.45×2.80×0.2mm芯片上的移相器其参数为:插损小于4.03dB,输入电压驻波比小于1.66,输出电压驻波比小于1.71,相移偏差在12.5°以内.  相似文献   

11.
We present a reflective spatial phase shifter which operates at terahertz regime above 325 GHz. The controllable permittivity of the nematic liquid crystals was utilized to realize a tunable terahertz (THz) reflective phase shifter. The reflective characteristics of the terahertz electromagnetic waves and the liquid crystal parameters were calculated and analyzed. We provide the simulation results for the effect of the incident angle of the plane wave on the reflection. The experiment was carried out considering an array consisting of 30?×?30 patch elements, printed on a 20?×?20 mm quartz substrate with 1-mm thickness. The phase shifter provides a tunable phase range of 300° over the frequency range of 325 to 337.6 GHz. The maximum phase shift of 331° is achieved at 330 GHz. The proposed phase shifter is a potential candidate for THz applications, particularly for reconfigurable reflectarrays.  相似文献   

12.
汤宁生 《现代雷达》2013,35(6):58-60
首先,阐述了一种铁氧体移相器控制系统,包含波控与移相器驱动电路两部分;然后,由项目设计角度出发,详细介绍了基于FPGA的波控电路设计方法,以及移相器位数与单位脉宽的关系;最后,阐明了移相器工作原理和移相器驱动电路的构成.  相似文献   

13.
The design and performance of two microstrip semiconductor phase shifters operating at S band and UHF are described. The S-band diode phase shifter uses thick-film metallization on a 99.5-percent alumina substrate and uses series coupled diodes for the small bits and constant phase frequency switched life bits for the three large bits. The 4-bit UHF phase shifter uses eight p-i-n diodes mounted in a low dielectric constant microstrip circuit and operates at a power level of 8 kW peak, 240 W average, and has an average insertion loss of 0.7 dB. Phase and VSWR distributions on 800 units produced are also given. The characteristics of two new microwave semiconductor switching devices, the field-effect diode (FED) and the resistive gate switch are described. These devices operate with only a voltage change. Design and performance of an SP2T switch and 3-bit phase shifter using the field-effect diode are presented.  相似文献   

14.
基于WIN 0.25 μm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,设计并制备了一款X波段4 bit单片微波集成电路(MMIC)数字移相器.22.5°和45°移相单元采用开关滤波型拓扑结构,90°和180°移相单元采用高低通滤波型拓扑结构.对拓扑结构工作原理进行分析,并采用ADS2014软件完成电路的电磁仿真及优化.测试结果表明,该4 bit MMIC数字移相器获得了优良的宽带性能,且与仿真结果吻合良好.在8~ 13 GHz频带内,移相器的均方根(RMS)相位精度误差小于6.5°,插入损耗优于-6.8 dB,RMS插入损耗波动低于0.5 dB,输入回波损耗优于-13 dB,输出回波损耗优于-9.5 dB.该4 bit MMIC数字移相器在相对带宽为47%的X频段内性能优良,适用于有源相控阵雷达等通信系统中.  相似文献   

15.
A low insertion lose fin-line PIN diode phase shifter is presented. 90° and 180° phase shifters are realized respectively. Phase error less than 5° and bandwidth 3 GHz at Ka band are achieved. The insertion loss is better than 0.5dB. The BPSK and QPSK modulators consisting of this phase shifter and fin-line coupler are also given. The circuits and results are given.  相似文献   

16.
面向现代通信及相控阵雷达领域的需求,设计了一种移相间隔为22.5°的Ka波段4位开关线型射频MEMS移相器。主要对实现移相功能的四个移相单元进行了设计,采用台阶补偿技术优化移相单元上下通路分工选通,以提供最佳的阻抗匹配;采用直角转角结构,设计了可提高CPW直角性能的延迟线,并对应用该延迟线的4位开关线型移相器进行了总体设计。用HFSS进行建模仿真,结果表明,在0~40 GHz工作频段内,16个状态的插入损耗均小于2.15 dB,回波损耗均大于19.18 dB,驻波比均小于1.25,在40 GHz频点处的相移误差在1.57°以内,整体尺寸为10 mm2。  相似文献   

17.
设计了一种应用于S频段卫星通信相控阵系统的反射型可调模拟移相器。该移相器利用三分支线定向耦合器扩展了带宽,改善了工作频段内驻波;采用传输线和变容二极管构成的L型反射负载扩大了相移量。测试结果表明,在上行频段1.98~2.01 GHz内,相移量达到191°±1°,在下行频段2.17~2.2 GHz内,相移量达到186°±0.1°;插入损耗优于3.3 dB且插入损耗波动小于1 dB,回波损耗在整个电压调谐范围内均大于20 dB。该移相器结构简单、便于调节且价格低廉,在卫星通信领域有一定的应用价值。  相似文献   

18.
机载相控阵火控雷达   总被引:1,自引:7,他引:1  
贲德 《现代雷达》2001,23(1):1-5
讨论了国际上机载火控雷达在采用相控阵体制方面突出的技术问题,提出了相控阵雷达中关键部件一移相器方案的新思路,阐述了这种方法既能减少移相器的位数,又能满足雷达系统需采用高位数移相器的要求以及给雷达系统研制带来了一系列好处。  相似文献   

19.
This concise paper presents the realization of a 90°constant phase shifter in the VHF band, which is entirely different from the conventional method for the realization of constant phase shifters in the audio frequency range. The construction of the 90° constant phase shifter is simple and can be easily realized by using a transmission line, and the lumped constant elements, R, L, C. Experimental verification is included.  相似文献   

20.
宽频带L波段360°模拟信号移相器的设计   总被引:1,自引:0,他引:1  
该文介绍了宽频带360°模拟移相器的设计理论。针对移相器的线性调相、平衡插入损耗波动、宽频带等进行了详细的探讨,且推导出确定移相器频带宽度的目标函数。用CAD方法迅速而准确地优化各网络设计参量。采用微波集成电路工艺制作的L波段模拟移相器在1.3~2.1GHz范围内可获得360°连续可变相移,最大调相电压18V,中心频率线性度优于±2.5%,插入损耗波动小于3dB。综合性能均优于国内报道的移相器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号