首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
A series of Ce3+ and Tb3+ singly- and co-doped NaBa4(AlB4O9)2Cl3 (NBAC) phosphors have been synthesized via high-temperature solid state route. The crystal structure, morphology, photoluminescent properties, thermal properties and energy transfer process between Ce3+ and Tb3+ were systematically investigated. The structure refinements indicated that the phosphors based on NBAC crystallized in P42nm polar space group in monoclinic phase. The emission color could be tuned from blue (0.1595, 0.0955) to green (0.2689, 0.4334) via changing the ratio of Ce3+/Tb3+. The energy transfer mechanism of Ce3+/Tb3+ was verified to be dipole–quadrupole interaction via the examination of decay times of Ce3+ based on Dexter's theory. The good thermal stability showed the intensities of Ce3+ at 150°C were about 66.9% and 64.88% in NBAC:0.09Ce3+ and NBAC:0.09Ce3+, 0.07Tb3+ of that at room temperature, and the emission intensities of Tb3+ remained 102.41% in NBAC:0.11Tb3+ and 95.22% in NBAC:0.09Ce3+, 0.07Tb3+ due to the nephelauxetic shielding effect and the highly asymmetric rigid framework structure of NBAC. The maximum external quantum efficiency (EQE) of Ce3+ in NBAC:0.09Ce3+, yTb3+ phosphors could reach 43.38% at y = 0.13. Overall, all the results obtained suggested that NBAC:Ce3+, Tb3+ could be a promising option for n-UV pumped phosphors.  相似文献   

2.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   

3.
阴极射线显示器用蓝粉一直是限制彩色显示器发光效率和亮度的重要因素之一,这一问题也 同样存在于FED显示器件中。本文报导了最新研制的一种新型蓝色荧光粉Sr_5(PO_4)_3Cl: EU~(2+), 具有发光亮度较高,色纯度好,对阴极不易产生污染的特点。  相似文献   

4.
Single‐phase KLaSr3(PO4)3F: Sm3+ phosphors with fluorapatite structure were prepared via high‐temperature solid‐state method in air atmosphere for the first time. The X‐ray diffraction, scanning electron microscope, diffuse reflectance spectra, photoluminescence spectra, and temperature‐dependent emission spectra, as well as lifetimes were measured to characterize the as‐prepared phosphors. Phase results indicated that KLaSr3(PO4)3F: Sm3+ belongs to hexagonal system with a space group of P‐6. Photoluminescence measurements showed the emission spectrum was composed of four sharp peaks at about 564, 602 (the strongest one), 646, and 702 nm, corresponding to the 4G5/26HJ (J=5/2, 7/2, 9/2, and 11/2) transitions of Sm3+ ions. The optimum doping concentration of Sm3+ ions was turned out to be 0.03 (mol), and the mechanism of energy transfer among Sm3+ ions was considered to be dipole‐dipole interaction by using Dexter's theory. In addition, the critical distance Rc for energy transfer among Sm3+ ions were calculated to be 9.97 Å according to Blasse concentration quenching method. The selected KLa0.97Sr(PO4)3F: 0.03Sm3+ exhibited high thermal stability with an activation energy of 0.163 eV. Besides, the Commission International de l'Eclairage chromaticity coordinate of the phosphor were located in the orange‐reddish light region.  相似文献   

5.
The development and photoluminescence analysis of Eu3+or Dy3+ ions in the matrix of lithium titanate (Li2TiO3) ceramics by using a solid state reaction method are reported. Emission spectra of Eu3+:Li2TiO3 ceramics have shown strong red emission at 611 nm (5D0 → 7F2) with λexci = 392 nm (7F0 → 5L6) and from the Dy3+:Li2TiO3, a blue emission at 493 nm (4F9/2 → 6H15/2) and also an yellow emission at 582 nm (4F9/2 → 6H13/2) have been observed with λexci = 366 nm (6H15/2 → 6P5/2). Both the rare-earth ions containing ceramics have displayed their brighter emission performance from their measured spectral results. In addition, X-ray diffraction (XRD), Fourier transform infra red (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) have been used to characterize the structural properties of (Eu3+ or Dy3+):Li2TiO3 ceramics.  相似文献   

6.
Uniform spindle-like micro-rods NaLa(WO4)2:Yb3+,Er3+ phosphors are prepared by the solvothermal method in the text. Controllable morphology of NaLa(WO4)2 crystal can be obtained by adjusting the prepared temperature, PH value, complexing agent content, and solvent ratio. Uniform NaLa(WO4)2:Yb3+,Er3+ micro-rods of 1.8 μm in length and 0.5 μm in width are synthesized at a low temperature of 120°C. The prepared NaLa(WO4)2:Yb3+,Er3+ phosphors present green upconversion luminescence under 980 nm excitation, luminescence intensity reaches to maximum at the Yb3+ and Er3+ concentration of 6 and 2 mol%. The temperature performance of the NaLa(WO4)2:Yb3+,Er3+ phosphors are evaluated based on thermal coupling technology. Temperature dependence of the two green emissions ratio of Er3+ ion is obtained, and the sensitivity of the sample can be calculated, the maximum sensitivity of NaLa(WO4)2:Yb3+,Er3+ is up to 0.019 K−1 at the sample temperature of 564 K.  相似文献   

7.
《应用陶瓷进展》2013,112(4):225-233
Abstract

Abstract

Lead free perovskite Ba(La1/2Nb1/2)O3 was prepared by conventional ceramic fabrication technique at 1375°C for 7?h in air atmosphere. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single phase monoclinic structure with space group P2/m. Energy dispersive X-ray analysis and scanning electron microscopy studies were carried to study the quality and purity of the compound. Permittivity data showed low temperature coefficient of capacitance (T CC = 11%) up to 100°C. The circuit model fittings were carried out using the impedance data to find the correlation between the response of real system and idealised model electrical circuit. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in Ba(La1/2Nb1/2)O3. The AC conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy.  相似文献   

8.
Properties of the blends of Poly(vinyl chloride) (PVC) and poly(ε‐caprolactone) (PCLO) and copolyesters based on ε‐caprolactone and L‐lactide (LLA) prepared by rolling were studied. Incorporating the LLA units into the structure of PCLO the content of the crystalline phase was controlled. Miscibility of the blends was assessed using DMA, and basic mechanical properties were correlated with the type and content of the polymer plasticizer. The PVC blends containing up to 20 wt parts polyesters were miscible. The presence of the LLA units in the copolyester influenced negatively the thermal stability. On the other hand even small content of copolyester in the blend enhanced the resistivity against aging. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
The thermal degradation kinetics of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [poly(HB–HV)] under nitrogen was studied by thermogravimetry (TG). The results show that the thermal degradation temperatures (To, Tp, and Tf) increased with an increasing heating rate (B). Poly(HB–HV) was thermally more stable than PHB because its thermal degradation temperatures, To(0), Tp(0), and Tf(0)—determined by extrapolation to B = 0°C/min—increased by 13°C–15°C over those of PHB. The thermal degradation mechanism of PHB and poly(HB–HV) under nitrogen were investigated with TG–FTIR and Py–GC/MS. The results show that the degradation products of PHB are mainly propene, 2‐butenoic acid, propenyl‐2‐butenoate and butyric‐2‐butenoate; whereas, those of poly(HB–HV) are mainly propene, 2‐butenoic acid, 2‐pentenoic acid, propenyl‐2‐butenoate, propenyl‐2‐pentenoate, butyric‐2‐butenoate, pentanoic‐2‐pentenoate, and CO2. The degradation is probably initiated from the chain scission of the ester linkage. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1530–1536, 2003  相似文献   

10.
In this paper, polypropylene (PP)/organophilic montmorillonite (OMMT) nanocomposites were successfully prepared without any compatibilizers by solid‐state shear compounding (S3C) using pan‐mill equipment. X‐ray diffraction (XRD) patterns show that the OMMT characteristic (001) peak at 2θ equal to 4.59 degrees disappeared for the milled OMMT and corresponding composites. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) photographs show that the thickness of pan‐milled OMMT decreased from ca 100–200 nm to ca 30–50 nm, and OMMT was partly exfoliated in the PP matrix because the pan‐type mill can exert fairly strong squeezing force in the normal direction and shearing force in both radial and tangential directions on milled materials. PP/OMMT nanocomposites at low OMMT loading have higher melting point, crystallization temperature, thermal degradation temperature and heat distortion temperature than those of neat PP. Moreover, addition of OMMT accelerates crystallization of PP significantly. S3C is a novel approach to prepare polymer/layered silicate nanocomposites with high performances at low filler loading. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
A new convenient route for the synthesis of poly(-caprolactone) (PCL) with α,ω-telechelic diols' end-groups is presented. Synthesis of α,ω-telechelic PCL diols (HOPCLOH) was achieved by ring-opening polymerization (ROP) of -caprolactone (CL) catalyzed with ammonium decamolybdate (NH4)8[Mo10O34] and using diethylene glycol (DEG) as initiator. Obtained HOPCLOH was characterized by 1H and 13C NMR, FT-IR, GPC and MALDI-TOF. Comparative studies demonstrate that ammonium decamolybdate (NH4)8[Mo10O34] is better catalyst than Sn-octanoate (SnOct2) toward CL polymerization in presence of DEG, under the conditions tested. A biodegradable poly(ester-urethane-urea) derivative was efficiently prepared from synthesized HOPCLOH. Obtained polymer shows minor differences with respect to the properties recorded for a poly(ester-urethane-urea) obtained from commercial HOPCLOH.  相似文献   

12.
An X‐ray crystallographic study of 2,2″,4,4′,4″,6,6′,6″‐octanitro‐1,1′ : 3′,1″‐terphenyl (ONT) has been carried out. The dihedral angles between benzene rings vary from 84.9° to 89.4°. Nonbinding interatomic distances of oxygen atoms inside all the nitro groups are shorter than the intermolecular contact radii for oxygen. On the basis of the DFT B3LYP/6‐31(d, p) method it was found that the difference between the X‐ray structure in the solid phase and DFT result for the gas phase is 98 kJ mol−1, and the bearer of the highest initiation reactivity of the ONT molecule in the solid phase should be the nitro group at 4″‐position, in contrast to those at 4′‐ or 6′‐position that play this role in the isolated molecule. It has been stated that the nitro groups at the reaction centers of the ONT molecule are relatively well specified by their 15N NMR chemical shifts.  相似文献   

13.
X‐ray crystallographic study of 2,2′,2″,2′′′,4,4′,4″,4′′′,6,6′,6″,6′′′‐dodecanitro‐1,1′ : 3′1″ : 3″,1′′′‐quaterphenyl (DODECA) has been carried out. Nonbonding interatomic distances of oxygen atoms inside of all the nitro groups are shorter than those corresponding to the intermolecular contact radii for oxygen. By means of the DFT B3LYP/6‐31(d, p) method a difference of 136 kJ mol−1 between the X‐ray and DFT structures of DODECA was found. The bearer of the highest initiation reactivity in its molecule in solid phase should be the nitro group at 4′′′‐position, in contrast to those at 2′‐ or 2″‐positions in its isolated molecule. The most reactive nitro group in the DODECA molecule can be well specified by the relationship between net charges on nitro groups and charges on their nitrogen atoms, both of them for the X‐ray structure. The 15N chemical shift, corresponding to this nitro group for the initiation by impact and shock, correlates very well with these shifts of the reaction centers of the other six “genuine” polynitro arenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号