首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the widely tunable band gap and broadband excitation, CdS quantum dots (QDs) show great promise for yellow-light luminescence center in white-light-emitting devices. The light intensity of the CdS QD-doped glass was enhanced by doping the Tm3+ ions due to the higher absorption rate. The influence of Tm3+ ions on the surface structure of CdS QDs was enormous according to the first-principles calculations. Doping Tm3+ ions change the surface state of CdS QDs, which will fix the QDs emission peaks and enhance the luminescence of CdS QDs at a lower heat-treatment temperature. White-light emission was obtained by tuning the relative concentration between Tm3+/CdS QDs. However, there is a fundamental challenge to fabricate QD-doped glass fibers by rod-in-tube method since uncontrollable QDs crystallization is hard to avoid. Herein, a white-light-emitting borosilicate glass fiber was fabricated by the “melt-in-tube” method using a special designed Tm3+/CdS QDs co-doped borosilicate glass with low-melting temperature as fiber core. After heat treatment, ideal white-light emission was observed from the fiber under excitation at single wavelength (359 nm). This finding indicates that Tm3+/CdS QDs co-doped glass fiber with white-light-emitting devices has potential application as gain medium of white-light-emitting sources and fiber lasers.  相似文献   

2.
《Ceramics International》2019,45(12):14691-14696
Fluorotellurite glasses tri-doped with Tm3+, Er3+ and Bi ions were investigated. The measured parameter ΔT (116 °C) confirmed that the prepared glasses had good stability. An ultra-broadband fluorescence emission (950–1670 nm) was observed with a full-width at half-maximum (FWHM) of 560 nm, which covered the entire bands of O, E, S, C, L and U. The 1800 nm fluorescence intensity of Tm3+/Er3+ co-doped and Tm3+/Er3+/Bi tri-doped glasses was enhanced compared to Tm3+ doped glass, which indicates that there is energy transfer between Tm3+, Er3+ and Bi ions. The maximum fluorescence lifetime of the prepared glasses was 7.39 ms, indicating the excellent fluorescence performance at 1800 nm. Additionally, the maximum absorption cross section (σabs = 1.77 × 10−20 cm−2) and emission cross section (σem = 7.61 × 10−20 cm−2) suggest that the Tm3+/Er3+/Bi tri-doped glasses have good optical absorption properties and high gain fluorescence emission. The above results indicate that the Tm3+/Er3+/Bi tri-doped fluorotellurite glasses have good application prospects in the field of fiber amplifiers and near-infrared lasers.  相似文献   

3.
A novel double-cladding Ho3+/Tm3+ co-doped Bi2O3–GeO2–Ga2O3–BaF2 glass fiber, which can be applied to a 2.0-μm infrared laser, was fabricated by a rod-tube drawing method. The thermal properties of the glass were studied by differential scanning calorimetry. It showed good thermal stability and matching thermal expansion coefficient for fiber drawing when TxTg > 193°C and the maximum difference of the thermal expansion coefficient is 3.55 × 10−6/°C or less. The 2.0-μm luminescence characteristics were studied using the central wavelength of 808 nm pump light excitation. The results show that when the concentration ratio of Ho3+/Tm3+ reaches 0.5 mol%:1.0 mol%, the maximum fluorescence intensity was obtained in the core glass, the emission cross section reached 10.09 × 10−21 cm2, and the maximum phonon energy was 751 cm−1. In this paper, a continuous laser output with a maximum power of 0.986 W and a wavelength of 2030 nm was obtained using an erbium-doped fiber laser as a pump source in a 0.5 m long Ho3+/Tm3+ co-doped glass fiber. In short, the results show that Ho3+/Tm3+ co-doped 36Bi2O3–30GeO2–15Ga2O3–10BaF2–9Na2O glass fiber has excellent laser properties, and it is an ideal mid-infrared fiber material for a 2.0-μm fiber laser with excellent characteristics  相似文献   

4.
In the paper, the upconversion luminescence of 70GeO2–30[Ga2O3–BaO–Na2O] glass system co-doped with Yb3+/Tm3+ ions was investigated. Strong blue emission at 478 nm corresponding to the transition 1G4 → 3H6 in thulium ions was measured under the excitation of 976-nm diode laser. The dependence of the upconversion emission upon the thulium ion concentration was studied to determine the optimal conditions of energy transfer between energy levels of active dopants. The most effective energy transfer Yb3+ → Tm3+ was obtained in glass co-doped with molar ratio of dopant 0.7 Yb2O3/0.07 Tm2O3. The increase in thulium concentration more than 0.07 mol% results in the reverse energy transfer from Tm3+ → Yb3+, which leads to rapid quenching of the luminescence line at the wavelength 478 nm. In germanate glass co-doped with 0.7Yb2O3/0.07Tm2O3, the longest lifetime of 1G4 level equal 278 μs was achieved. The presented results indicate that elaborated germanate glass co-doped with Yb3+/Tm3+ ions is a promising material that can be used to produce fiber lasers and superluminescent fiber sources generating radiation in the visible spectrum.  相似文献   

5.
The development of mid-infrared (MIR) broadband tunable lasers urgently needs high performance laser gain materials. Transition metal (TM) ions doped glass ceramics are considered to be efficient MIR broadband laser gain media. However, it is difficult to achieve gain because of the large scattering loss and low luminescence efficiency. In this paper, GeS2–Sb2S3–CsI–PbI2 chalcohalide glass ceramics containing CsPbI3 perovskite nanocrystals are fabricated by the melt-quenching method and subsequent heating treatment. The crystallization behavior of CsPbI3 nanophase and MIR luminescence properties of Ni2+ dopant are systematically investigated. Evidently, spherical CsPbI3 perovskite nanocrystals are precipitated and uniformly distributed in the glassy matrix, which can reduce the light scattering and make the chalcohalide glass ceramics have a high transparency. Moreover, an ultra-broadband MIR emission in the range of 2.5–5.5 μm is observed for the first time, to our best knowledge, from Ni2+-doped chalcohalide glass ceramics containing CsPbI3 perovskite nanocrystals. The newly developed Ni2+-doped chalcohaldie glass ceramics could be promising gain media for MIR broadband tunable lasers.  相似文献   

6.
Near-infrared (NIR) luminescence of Pr3+ and Tm3+ ions in titanate-germanate glasses has been studied for laser and fiber amplifier applications. The effect of the molar ratio GeO2:TiO2 (from 5:1 to 1:5) on spectroscopic properties of glass systems was studied by absorption, luminescence measurements, and theoretical calculations using the Judd–Ofelt theory. It was found that independent of the TiO2 concentration, intense NIR emissions at 1.5 and 1.8 μm were observed for glasses doped with Pr3+ and Tm3+ ions, respectively. Moreover, several spectroscopic and NIR laser parameters for Pr3+ and Tm3+ ions, such as emission bandwidth, stimulated emission cross-section, quantum efficiency, gain bandwidth, and figure of merit, were determined. The results were discussed in detail and compared to the different laser glasses. Systematic investigations indicate that Pr3+-doped system with GeO2:TiO2 = 2:1 and Tm3+-doped glass with GeO2:TiO2 = 1:2 present profit laser parameters and could be successfully applied to NIR lasers and broadband optical amplifiers.  相似文献   

7.
It is well recognized that a widely wavelength‐tunable mid‐infrared (MIR) fiber laser plays an important role in the development of compact and efficient coherent sources in the MIR range. Herein, the optimizing Er/Ho ratio for enhancement of broadband tunable MIR emission covering 2.6‐2.95 μm in the Er3+/Ho3+‐codoped transparent borosilicate glass‐ceramic (GC) fibers containing NaYF4 nanocrystals under 980 nm excitation was investigated. Specifically, the obtained GC fibers with controllable crystallization and well fsd‐maintained structures were prepared by the novel melt‐in‐tube approach. Owing to the effective energy transfer between Er3+ and Ho3+ after crystallization, the 2.7 μm MIR emission was obviously enhanced and the emission region showed a notable extension from 2.6‐2.82 μm to 2.6‐2.95 μm after the addition of Ho3+. Importantly, we conducted a theoretical simulation and calculation related to the MIR laser performance, signifying that the GC fiber may be a promising candidate for MIR fiber laser. Furthermore, the melt‐in‐tube approach will provide a versatile strategy for the preparation of diverse optical functional GC fibers.  相似文献   

8.
《Ceramics International》2023,49(1):309-322
Efficient ultra-broadband near-infrared (NIR) phosphors with long-wavelength (λmax > 850 nm) and wide full width at half-maximum (FWHM, >200 nm) have sparked tremendous interest, demonstrating their immense potential in NIR spectroscopy technology. Nevertheless, the development of NIR spectroscopy technology suffers from the restricted capability to efficiently emit the ultra-broadband NIR light. Herein, the synergetic enhancement strategy of heterogeneous substitution and compositional modulation was applied to create a novel Cr3+ doped long-wavelength ultra-broadband MgO: Cr3+, Ga3+ phosphor, which exhibited a long-wavelength ultra-broadband NIR emission (λmax = 850 nm) covering the range of 650–1300 nm on the electromagnetic spectrum with the FWHM of more than 200 nm under the excitation of 468 nm light. Furthermore, the tunable NIR emission from 818 nm to 862 nm with an optimized quantum efficiency of 30% was accomplished by the Ga3+ ions substitution and Cr3+ ions modulation. The phosphor exhibited remarkable thermal stability up to 100 °C, remaining 83% of the integrated emission intensity at room temperature. A prototype of the NIR phosphor-converted LED (pc-LED) demonstrated that the novel MgO: Cr3+, Ga3+ phosphor possessed a relatively strong NIR output power (15.05 mW at 100 mA driven current) with a photoelectric conversion efficiency of 5.53%, which is impressive compared with other Cr3+-doped long-wavelength ultra-broadband phosphors. This work not only proposes a novel long-wavelength ultra-broadband NIR phosphors with industrialization and great application prospect in night vision but highlights a synergetic enhancement strategy to effectively boost the performance of long-wavelength ultra-broadband NIR pc-LED light sources.  相似文献   

9.
Er3+-doped fiber lasers operating at 2.7 μm have attracted increasing interest because of their various important applications; however, the intrinsic self-terminating effect of Er3+ and the reliability of glass hosts hindered the development of Er3+-doped fiber lasers. Herein, the glass-forming regions of a series TeO2–Ga2O3–R2O (or MO) (R = Li, Na, and Rb; M = Mg, Sr, Ba, Pb, and Zn) glasses are predicted by the thermodynamic calculation method. On this basis, the physical and optical properties of TeO2–Ga2O3–ZnO (TGZ) glass are investigated in detail as an example. Under the excitation of 980 nm laser diode, the fluorescence intensity at 2.7 μm reaches a maximum in the heavily Er3+-doped TGZ glass. By contrast, the accompanying near-infrared fluorescence at 1.5 μm and upconversion green emissions at 528 nm and 546 nm are all effectively weaken. Furthermore, the lifetime gap between the 4I11/2 upper laser level and 4I13/2 lower laser level is sharply narrowed from 2.81 ms to 0.59 ms, which is beneficial to overcome the population conversion bottleneck. All results demonstrate that these newly developed ternary tellurite glass systems are promising candidates for near-/mid-infrared laser glass fiber, fiber amplifiers, and fiber lasers.  相似文献   

10.
The well‐formed high quality β‐NaYF4:Er3+/Tm3+, Yb3+ microcrystals with near/mid‐infrared (NIR/MIR) emission are synthesized by the solvothermal method. Obvious 1.4 μm, 1.8 μm emissions, and 1.5 μm emission are observed in as‐prepared β‐NaYF4:Tm3+, Yb3+ and β‐NaYF4:Er3+, Yb3+ microcrystals, respectively. To obtain MIR emission, the as‐prepared β‐NaYF4:Er3+, Yb3+ microcrystals are heat‐treated at different temperature schedule and atmosphere, it demonstrates there is great effect on the morphology and crystal structure when heat‐treated at different temperature, while little effect under different heat‐treated atmosphere. Subsequently, after heat‐treatment at 575°C in air, owing to the efficient elimination of internal defects and partly surface hydroxyl/citrate groups, an obvious 2.7 μm MIR emission is successfully detected in heat‐treated β‐NaYF4:Er3+, Yb3+ microcrystals for the first time.  相似文献   

11.
《Ceramics International》2023,49(8):12301-12308
Tellurite glasses doped with Tm3+, Ho3+ and Ce3+ ions were prepared via melt-quenching to realise broadband and fluorescence enhancement in near-infrared (NIR) band. Under the pumping of a commercial 808 nm laser diode (LD), the emission bands at 2.0 μm, 1.85 μm, 1.47 μm, and 705 nm were observed in the Tm3+/Ho3+ co-doping glass samples, which originated from the transitions of Ho3+:5I75I8 and Tm3+:3F43H6, 3H43F4, 3F2,3 → 3H6, respectively. The existence of 2.0 μm band fluorescence is due to the energy transfer from the Tm3+:3F4 level to the Ho3+:5I7 level. This band overlaps with the 1.85 μm band which forms a broadband fluorescence spectrum in the range of 1600–2200 nm. In glass samples co-doped with Tm3+/Ho3+ with 0.085 mol% Ho2O3 and 1 mol% Tm2O3, the full width at half maximum (FWHM) of this broadband spectrum (1600–2200 nm) was as high as ∼370 nm. After introducing 0.6 mol% CeO2, the emission intensity of broadband fluorescence increased by ∼50%, which was caused by the cross-relaxations between Ce3+ and Tm3+ ions. The lifetime of fluorescence decay was determined to prove the interactions among the doped rare-earth ions, the radiative parameters such as transition probability, branching ratio and radiative lifetime were calculated from the absorption spectra based on the Judd-Ofelt theory to better understand the observed luminescence phenomena. In addition, X-ray diffraction (XRD) confirmed the amorphous state structure of the synthesised glass samples, while Raman spectrum revealed the different vibrational structural units forming the glass network.  相似文献   

12.
《Ceramics International》2023,49(6):8976-8985
In this work, a series of Dy3+ and Dy3+/Tm3+ ion activated Ca3NbGa3Si2O14 glass-ceramics were prepared by traditional melt crystallization method, and report on the structural, optical, and energy transfer (ET)-based photoluminescence (PL) properties of glass-ceramics co-doped Dy3+/Tm3+. The preparation of glass-ceramics was studied by DTA, XRD, SEM, and UV–vis photometer technology, phase composition, transmittance, optimum heat treatment conditions, and luminescence properties. The best heat treatment procedure for obtaining transparent and well-formed glass-ceramics is crystallization at 820 °C for 5 h. The spectra excited by Tm3+ and Dy3+ have intersections at 352 nm and 365 nm, which means that CNGS: Dy3+/Tm3+ can be effectively excited by 352 nm and 365 nm ultraviolet light. Under the excitation of 352 nm ultraviolet light, four main emission peaks corresponding to 1D23F4, 4F9/2 → 6H15/2, 4F9/2 → 6H13/2, 4F9/2 → 6H11/2 were found at 456 nm, 484 nm, 577 nm, and 663 nm, respectively. When the optimal concentration (4 at.%) of Dy3+ is Co-doped with a different amount of Tm3+, the luminous color can be adjusted by adjusting the doping amount of Tm3+ and changing the excitation wavelength. There is an overlapping region between the emission spectrum of Tm3+ doped glass and the excitation spectrum of Dy3+ doped glass, which indicates that there is energy transfer between Tm3+ and Dy3+. In addition, CNGS: Dy3+/Tm3+ CIE coordinates show that the color coordinates (0.3324, 0.3352) when y = 0.02 under 365 nm excitation are closest to the standard white light (0.333, 0.333), indicating that this glass has potential applications in WLED devices.  相似文献   

13.
《Ceramics International》2022,48(16):22961-22966
Lanthanide-doped upconversion photoluminescent nanoparticles with unique anti-Stokes spectroscopic properties excel in many fields of application. Ytterbium-based self-sensitized fluorides with rich Yb3+ possess higher absorption efficiency of incident near infrared laser, and are more favorable for photoluminescence or optical heating applications. In this work, α-NaYbF4:Tm3+ crystalline nanoparticles are synthesized, which exhibit intense ultraviolet self-sensitized upconversion photoluminescence and highly efficient optical heating capability under 980 nm laser excitation. NaYbF4:Tm3+ nanocrystals emit multi-band luminescence with emission peaks located in the ultraviolet, blue and red spectral regions. The energy transfer mechanism and electronic transition pathways for the Upconversion luminescence are investigated based on the energy level scheme, and are further confirmed by luminescent dynamic analysis. Due to cross-relaxations between Tm3+ and energy back transfer from Tm3+ to Yb3+ processes, the NaYbF4: 1 mol% Tm3+ nanoparticles possess the highest luminescence intensity. The luminescent dynamic characteristics, such as decay time and rise time, vary with Tm3+ doping concentrations. Highly efficient optical heating effect is observed in the NaYbF4:Tm3+ nanoparticles with slope efficiency of photothermal conversion for 10 s laser irradiation is as high as 100.48 °C/W.  相似文献   

14.
Yttrium aluminosilicate (YAS) glass core fibers with different doping concentration of Tm3+ were fabricated by a “Melt‐in‐Tube” method from YAG polycrystalline ceramics. The effect of Tm3+ concentration on the spectroscopy of YAG ceramics and laser performance of YAS fibers were discussed. A homemade linear all‐fiber laser based on the obtained 15% Tm3+‐doped YAS fiber shows an optimized slope efficiency of 12.8%. The YAS fibers have been proven to be practical to achieve extremely high Tm3+ doping concentration and are a promising option for the 2.0 μm laser.  相似文献   

15.
《Ceramics International》2023,49(13):21872-21882
The near-infrared (NIR) luminescence in S+E+O bands of tellurite glasses doped with Nd3+/Tm3+ and Ag nanoparticles (NPs) was investigated. The tellurite glasses were prepared by melt-quenching and heat-treated techniques. Under the excitation of 808 nm laser, Nd3+/Tm3+ doped tellurite glasses produced three NIR luminescence bands of 1.33, 1.47 and 1.85 μm, originating from Nd3+:4F3/24I13/2, Tm3+:3H43F4 and Tm3+:3F43H6 transitions respectively. Interestingly, a broadband luminescence spectrum ranging from 1280 to 1550 nm with the FWHM (full width at half maximum) about 201 nm was obtained due to the overlapping of the first two NIR bands. Further, the peak intensity of this broadband luminescence was increased by 75% after the introduction of Ag NPs with diameter in 10–20 nm. The analysis of fluorescence decay shows that compared with the enhanced local electric field, the energy transfer from Ag species to Nd3+ and Tm3+ ions plays a major role in luminescence enhancement. The findings in this work indicate that tellurite glass co-doped with Nd3+/Tm3+ and Ag NPs is a potential gain material applied in the S+E+O-band photonic devices.  相似文献   

16.
Demands are increasing for ultrashort pulse laser in industrial applications, where the gain bandwidth of most optical fiber material is not wide enough, and developing a wide bandwidth gain medium is challenging. Glass–ceramic fibers containing Nd3+/Yb3+ co-doped YCa4O(BO3)3 nanocrystals were fabricated by the molten core method and successive heat treatment. After a careful heat treatment, Nd3+/Yb3+ co-doped YCa4O(BO3)3 nanocrystals were precipitated in the fiber core. Enhanced broadband near-infrared (NIR) emission from 850 to 1150 nm (bandwidth: ∼252 nm) was obtained in the glass–ceramic fiber compared to that of precursor fiber. These results suggest that the Nd3+/Yb3+ glass–ceramic fibers are promising for broadband NIR optical amplifications and lasers.  相似文献   

17.
Tm3+ doped zinc silicate glass-ceramics composed of SiO2-Al2O3-ZnO-K2O-Tm2O3 embedded with ZnO nanocrystals were successfully fabricated by melt-quenching method with subsequent heat treatment. Tm3+ ions and ZnO nanocrystals were introduced as blue and yellow luminescence centers, respectively. The effects of heat treatment, excitation wavelength and Tm3+ doping concentration on the photoluminescence behaviors of these glass-ceramics were studied. Short-time (5 minutes) heat treatment was considered as the optimal heat treatment time, which facilitates simultaneously emitting narrow blue peak located at 453 nm and a broad yellow band centered at 580 nm. Blue and yellow emissions could be attributed to the 1D2 → 3F4 transition of Tm3+ and Zni/Oi-related defect emission of ZnO nanocrystals, respectively. The combination of these two emissions allows the realization of white light emitting in the glass-ceramic samples. Furthermore, tunable luminescent color and chromaticity coordinates, including yellow, white and blue, can be realized by varying the pumping wavelengths as well as the content of Tm3+ dopant in the glass matrix. Nearly perfect white light emission with Commission Internationale de l'Eclairage coordinate (x = 0.33, y = 0.32) was achieved for the 0.05 mol% Tm3+ doped glass-ceramic embedding ZnO nanocrystals by heat treatment at 750°C for 5 minutes under the excitation of 360 nm. These luminescent glass-ceramics doped with Tm3+ ion and ZnO nanocrystals could be a promising candidate for white light emitting devices under near-ultraviolet excitation.  相似文献   

18.
A growing demand for white light-emitting diodes (W-LEDs) gives rise to continuous exploration of functional fluorescence glasses. In this paper, Tm3+/Dy3+ single- and co-doped glasses with composition (in mol%) of 30P2O5–10B2O3–23SrO–37K2O were synthesized using the melt-quenching method in air. The physical properties, glass structure, luminescence characteristics and energy transfer mechanism of the glasses were systematically studied. As glass network modifiers, Tm3+ and Dy3+ ions can densify the glass structure. Excitation wavelength and doping concentration of Tm3+/Dy3+ ions have a direct impact on the emission intensities of blue and orange light as well as the color coordinate of the as-prepared glasses. A white light very close to standard white light can be obtained under 354 nm excitation when the content of Tm3+ and Dy3+ is 0.2 mol% and 1.0 mol%, respectively. The results of the emission spectra and decay curves reveal the existence of energy transfer from Tm3+ to Dy3+. The analytic results based on the Inokuti-Hirayama model indicate that the electrical dipole-dipole interaction may be the main mechanism of energy transfer. Moreover, Tm3+/Dy3+ co-activated glass phosphor has good thermal stability and chrominance stability and it is a promising candidate for white LEDs and display device.  相似文献   

19.
Tm3+-singly-doped and Tm3+-/Ho3+-codoped TeO2-Bi2O3-ZnO-Li2O-Nb2O5 (TBZLN) tellurite glasses were successfully prepared by the melt-quenching technique. Emission characteristics and energy transfer mechanisms were studied upon 785-nm laser diode excitation. A significant enhancement of emission intensity at 1.81 μm with increasing concentration of Tm3+ ions has been observed while increase in the emission intensity at 2.0 μm with increasing concentration of Ho3+ has been observed up to the equal concentration of Tm3+ (0.5 mol%) in TBZLN glasses. The stimulated emission cross section of Tm3+: 3F43H6 (5.20×10−21 cm2) and Ho3+: 5I75I8 (4.00×10−21 cm2) in 1.0 mol% Tm3+-doped and 0.5 mol% Tm3+/1.0 mol% Ho3+-codoped TBZLN glasses are higher compared with the reported and are found to be excellent candidates for solid-state lasers operating at ~1.8 and 2.0 μm, respectively. The extension of near-infrared (NIR) emission of Tm3+ with Ho3+ ions provides the possibility of using these materials for broadband NIR amplifiers.  相似文献   

20.
Borosilicate glasses doped with PbSe quantum dots (QDs) were prepared by a conventional melt‐quenching process followed by heat treatment, which exhibit good thermal, chemical, and mechanical stabilities, and are amenable to fiber‐drawing. A broad near infrared (NIR) photoluminescence (PL) emission (1070‐1330 nm) band with large full‐width at half‐maximum (FWHM) values (189‐266 nm) and notable Stokes shift (100‐210 nm) was observed, which depended on the B2O3 concentration. The PL lifetime was about 1.42‐2.44 μs, and it showed a clear decrease with increasing the QDs size. The planar [BO3] triangle units forming the two‐dimensional (2D) glass network structure clearly increased with increasing B2O3 concentration, which could accelerate the movement of Pb2+ and Se2? ions and facilitate the growth of PbSe QDs. The tunable broadband NIR PL emission of the PbSe QD‐doped borosilicate glass may find potential application in ultra‐wideband fiber amplifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号