首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A novel Mn4+ activated Ca2LaSbO6 (CLS) far-red phosphor was synthesized by high temperature solid state reaction. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence spectra, ultraviolet-visible spectra, luminescence decay times, emission-temperature relationship and internal quantum efficiency (IQE). It is found that CLS:Mn4+ phosphor has a strong broad excitation band in the range of 200–550?nm. The samples can be excited by ultraviolet and blue light. There is a wide emission band centered at 685?nm between 600?nm and 760?nm. The optimum doping concentration of Mn4+ is approximately 0.5?mol%. In addition, all the CIE chromaticity coordinates of CLS:0.005Mn4+ located at far-red region. The concentration quenching mechanism is the dipole-dipole interaction of Mn4+ activator. Importantly, the CLS:0.005 Mn4+ sample has an IQE of up to 52.2%. Finally, a 365?nm ultraviolet light emitting diode (LED) chip combined with 0.5?mol% Mn4+ far-red phosphor was used to fabricate the LED device. All the results indicated that CLS:Mn4+ phosphors have potential applications in indoor plant cultivation.  相似文献   

2.
Non–rare earth Mn4+-activated strontium aluminate phosphor is considered to be a promising material for plant cultivation field owing to their advantage of inexpensively, environment friendly, nontoxic, and appropriate spectral range. In this paper, a Sr4−xBaxAl13.99O25:0.01Mn4+,1.4H3BO3 strontium aluminate phosphor is synthesized by a convenient high-temperature solid-state reaction. The photoluminescence spectra located at red region with a peak at 655 nm in the range of 600 to 750 nm that can be excited under the excitation of ultraviolet (~346 nm) or blue light (~450 nm). The shape emission band at 655 nm is attributed to the transition of 2Eg-4A2g. Furthermore, the emission intensity of Sr4−xBaxAl13.99O25: 0.01Mn4+,1.4H3BO3 phosphor is conducted in detail with the variety of Ba2+ doping concentration and the intensity can be enhanced to 140.9% than the Sr4Al13.99O25:0.01Mn4+,1.4H3BO3 when the value of Ba2+ concentration equal to 0.1 mol. In addition, the X-ray diffraction spectra, element mapping, composition modifying, optical properties, FT-IR spectra, diffuse reflectance spectra, thermal stability, and fluorescence lifetime are systematically investigated. According to the electro-luminescent spectra of as-packaged LED, indicating that the Sr3.9Ba0.1Al13.99O25:0.01Mn4+,1.4H3BO3 phosphor will become a great candidate for plant cultivation LEDs due to the emission spectra match well the plant pigment spectrum.  相似文献   

3.
Herein, a series of Eu2+&Mn2+substituted fluorophosphates Ca6Gd2Na2(PO4)6F2 phosphor with apatite structure have been synthesized and investigated by the powder X‐ray diffraction, photoluminescence spectra, fluorescence decay curves, thermal quenching, and chromaticity properties. Particularly, both Eu2+ and Mn2+ emissions at the two different lattice sites 4f and 6h in Ca6Gd2Na2(PO4)6F2 matrix have been identified and discussed. The dual energy transfer of Eu2+→Mn2+ and Gd3+→Mn2+ in Ca6Gd2Na2(PO4)6F2:Eu2+,Mn2+ samples have been validated and confirmed by the photoluminescence spectra. The dependence of color‐tunable on the activator concentration of Mn2+ was investigated to realize white light emission. By varying the doping concentration of the Mn2+ ion, a series of tunable colors including pure white light and candle light are obtained under the excitation of 350 nm. Moreover, the fluorescence decay curves have been fitted and analyzed using the Inokuti–Hirayama theoretical model to estimate the Eu–Mn interaction mechanism. We also investigated temperature‐dependent photoluminescence quenching characteristics according to the Arrhenius equation. Preliminary studies on the properties of the phosphor indicated that the obtained phosphors might have potential application as a single‐component white‐emitting phosphor for UV‐based white LEDs.  相似文献   

4.
Deep-red light emitting phosphors are widely used in LEDs for indoor plant growth because of the critical role played by red light in plant growth. The luminescence properties of deep-red phosphors are still not well understood at present. An energy transfer strategy is a common and effective method to improve luminescence properties. In principle, the energy transfer process may occur when the sensitizer's emission spectra overlap with the activator's excitation spectra. In this work, Bi3+ and Mn4+ were incorporated into the matrix of Gd2MgTiO6 as sensitisers and activators, respectively. Mn4+ ions tend to occupy the [TiO6] octahedral site and the Bi3+ ions are expected to substituted in the site of Gd3+. The energy transfer process from Bi3+ to Mn4+ was realised and the photoluminescence (PL) intensity of Mn4+ increased with the doping content of Bi3+. Upon excitation at 375 nm, the PL intensity of Mn4+ increased to 116.4% when the doping concentration of Bi3+ reached 0.3%. Finally, the pc-LED devices were prepared by a Gd2MgTiO6:Bi3+, Mn4+ phosphor. The high red luminescence indicated that this phosphor has potential applications in indoor LED lighting.  相似文献   

5.
Novel Mn4+-activated KLaMgWO6 red phosphors with different Mn4+ concentrations were successfully synthesized via a high-temperature solid-state reaction method. The phase formation, microstructure, photoluminescence properties, decay lifetimes and internal quantum efficiency were discussed to analyze the properties of the as-prepared phosphors. The samples belonged to monoclinic crystal system with enough WO6 octahedrons that provided suitable sites for Mn4+ ions. Upon the excitation of 348?nm, KLaMgWO6:Mn4+ phosphors gave bright far-red emission around 696?nm due to the 2Eg4A2g transition of Mn4+ ions. The critical concentration of Mn4+ was 0.6?mol% and the concentration quenching mechanism belonged to electric multipolar interaction. Besides, the CIE chromaticity coordinates of the KLaMgWO6:0.6%Mn4+ phosphor were (0.7205, 0.2794) which located in deep red range, and its color purity reached up to 96.6%. The KLaMgWO6:0.6%Mn4+ sample also exhibited high internal quantum efficiency of 43%. All of the admirable optical properties indicate that the KLaMgWO6:Mn4+ phosphors can be applied to indoor plant growth illumination.  相似文献   

6.
Latent fingerprints provide crucial affirmations of identity in forensic science. However, they are microscopic. In this study, novel fluorescence materials, Ba2LaSbO6:Mn4+ (BLSO:Mn4+) phosphors, were developed by a sol–gel method for the fluorescence imaging of latent fingerprints. The structural properties of the phosphors were investigated by powder X-ray diffraction (XRD) and its Rietveld refinement analyses, and transmission electron microscopy and scanning electron microscopy techniques. The photoluminescence properties of the BLSO:Mn4+ phosphors were evaluated comprehensively by recording the emission, excitation, and decay curves. The BLSO:Mn4+ phosphors provide a high-intensity red emission at 677 nm under 350 nm excitation caused by the 2Eg4A2g transition of Mn4+. The optimum concentration of Mn4+ in the BLSO host was determined to be ~0.2 mol%. The calculated Commission International de L'Eclairage (CIE) chromaticity coordinates (0.716, 0.283) of the emission from the BLSO:Mn4+ phosphor are located in the pure red region of the CIE 1931 diagram. The red-emitting BLSO:0.2Mn4+ phosphor was used as a fluorescence imaging powder for visualizing latent fingerprints on various substrates with high resolution, high contrast, and high efficiency, as well as good selectivity.  相似文献   

7.
A novel deep-red-emitting phosphor Ca2ScNbO6:Mn4+ is prepared via a high-temperature solid-state reaction and its luminescent properties are systematically investigated. The results show that Mn4+-activated Ca2ScNbO6 phosphors have broad absorption in ultraviolet region, and show bright deep-red emission at 692 nm. The optimal doping concentration, crystal-field strength, internal quantum efficiency, and mechanism of concentration and thermal quenching effects are discussed in detail. Moreover, NaF flux is screened out to improve both luminescent intensity and morphology of the phosphor. Finally, a red light-emitting diode (LED) lamp is fabricated with as-prepared Ca2ScNbO6:Mn4+ phosphors and a 365 nm LED chip. The electroluminescence spectra show a good overlapping with phytochrome PR and PFR absorbance. The results provided the as-synthesized Ca2ScNbO6:Mn4+ phosphors a great potential in plant growth lighting.  相似文献   

8.
A series of LiCaGd(WO4)3 : xEu3+ (0 ≤ x ≤ 1.0) red phosphors with tetragonal scheelite structure were synthesized via the conventional solid-state reaction. Their crystal structure, photoluminescence excitation (PLE), and photoluminescence (PL) spectra, thermal stability and quantum efficiency were investigated. The phosphors exhibit a typical red light upon 395 nm near ultraviolet excitation, and the strongest emission peak at 617 nm is dominated by the 5D07F2 transition of Eu3+ ions. The PL intensity of the phosphors gradually increases with the increase of Eu3+ doping concentration, and the concentration quenching phenomenon is hardly observed. The quantum efficiency and the color purity of the phosphor reach maximum values of about 94.2 and 96.6% at x = 1.0, respectively. More importantly, LiCaGd(WO4)3:xEu3+ phosphors have prominent thermal stability. The temperature-dependent PL intensity of the phosphors at 423 K is only reduced to 89.1% of the PL intensity at 303 K, which is superior to that of commercial red phosphors Y2O3:Eu3+. Finally, LiCaGd(WO4)3:Eu3+ phosphor is packaged with near ultraviolet InGaN chips to fabricate white light emitting diodes, which has a low color temperature (CCT = 4622 K) and a high color rendering index (CRI= 89.6).  相似文献   

9.
Li5La3Ta2O12:Mn4+ (LLTO:Mn4+) phosphors are prepared in air via high-temperature solid-state method and investigated for their crystal structures and luminescence properties. LLTO:Mn4+ phosphor under excitation at 314 nm shows deep-red emission peaking at 714 nm due to the 2E→4A2 transition of Mn4+ ion. The excitation bands in the range 220 - 570 nm are attributed to the Mn4+ - O2- charge-transfer band and the 4A2g4T1g, 2T2g, and 4T2g transitions of Mn4+, respectively. The optimal Mn4+ ion concentration is ~0.4 mol%. The concentration quenching mechanism in LLTO:Mn4+ phosphor is electric dipole-dipole interaction. The luminous mechanism and temperature quenching phenomenon are explained by the Tanabe-Sugano energy level diagram and the configurational coordinate diagram of Mn4+ in the octahedron, respectively. The experimental results indicate that LLTO:Mn4+ phosphor has a potential application prospect as candidate of deep-red component in light-emitting diode (LED) lighting.  相似文献   

10.
An efficient and ultra-broadband red phosphor CsMg2P3O10: Mn2+ (CMPO: Mn2+) is first synthesized toward indoor plant growth LEDs. The phase purity, element composition, crystal, and local electronic structure are explored to discuss the structure and photoluminescence properties. Structure refinement and series X-ray diffractometer (XRD) results show that CMPO: Mn2+ is well crystallized in an orthogonal crystal system. The diffuse reflection and excitation spectra show that CMPO: Mn2+ has strong absorption around near ultraviolet region, assigned to the [6A14E(4D), 4T2(4D), [4A1(4G), 4E(4G)], and 4T1(4G)] transitions of Mn2+, respectively. Upon 415 nm excitation, an efficient red emission centered at 647 nm with ultra-broad full width at half-maximum (FWHM ∼ 100 nm) and high quantum efficiency (IQE ∼ 44.3 %) is observed, and because of the ultra-broad FWHM, the red emission is well accordant with the absorption spectra band of phytochrome PR and PFR. The optimal doping contents, lifetime as well as interaction mechanism of CMPO: Mn2+ are discussed in detail. Finally, the excellent thermal stability (84.5% @ 140°C) and related thermal quenching mechanism of CMPO: Mn2+ are discussed. The above results indicate that CMPO: Mn2+ phosphors have great potential for application in plant growth LEDs.  相似文献   

11.
《Ceramics International》2022,48(24):36140-36148
Non-rare earth Mn4+ ion-doped red oxide phosphors have great potential for applications in warm white light-emitting diodes (wLEDs) due to their low cost and stable physicochemical properties. Herein, a series of Ba2LaTaO6 (BLTO): Mn4+ phosphors were successfully synthesized by the high-temperature solid-state method. The theoretical values of the band gap calculated by the density functional theory are close to the experimental values obtained by the absorption spectroscopy. In addition, the phosphors have a broad excitation band in the wavelength range of 280–550 nm and emit red light at the peak wavelength of 681 nm under excitation. The concentration quenching of the BLTO: Mn4+ phosphor was caused by dipole-dipole interactions. The activation energy and the average decay lifetimes of the samples were calculated. Meanwhile, the effects of synthesis temperature and Li+ ion doping on the luminescence performance of the samples were also investigated. Satisfactorily, the color purity and internal quantum efficiency of the phosphor reached 98.3% and 26.8%, respectively. Further, the samples were prepared as red-light components for warm wLEDs. The correlated color temperature, color rendering index, and luminous efficiency of the representative devices driven by 60 mA current were 5190 K, 83.3, and 81.59 lm/W, respectively. This work shows that the BLTO: Mn4+ red phosphor with excellent luminescence performance can be well applied to warm wLEDs.  相似文献   

12.
A novel non‐rare‐earth doped phosphor La2MgGeO6:Mn4+ (LMG:Mn4+) with near‐infrared (NIR) long persistent luminescence (LPL) was successfully synthesized by solid‐state reaction. The phosphors can be effectively excited using ultraviolet light, followed by a sharp deep‐red emission peaking at 708 nm, which is originated from 2Eg → 4A2g transition of Mn4+ ions. The luminescent performance was analyzed by photoluminescence (PL) and photoluminescence excitation (PLE) spectra. The crystal field parameters were calculated to describe the environment of Mn4+ in LMG host. The LPL behaviors as well as the mechanisms were systematically discussed. This study suggests that the phosphors will broaden new horizons in designing and fabricating novel NIR long phosphorescent materials.  相似文献   

13.
《Ceramics International》2016,42(12):13476-13484
A novel green phosphor composed of Ca4LaO(BO3)3:Tb3+ (CLBO:Tb) has been synthesized by a combustion method with urea. Its crystal structure, temperature-dependent luminescence, and quantum yield (QY) have been characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectra with heating device and integrate sphere. No concentration quenching has been observed when all of La3+ ions are substituted with Tb3+ ions. Green phosphor Ca4TbO(BO3)3 (CTBO) has 200% luminescence intensity of commercially available phosphor LaPO4:Ce, Tb (LPO:Ce, Tb) under 378 nm excitation. The QY of CTBO is as high as 98%. Through a Dexter energy transfer mechanism, Eu3+ ions are efficiently sensitized by Tb3+, resulting in an emission with color tunable from green to red under ultraviolet excitation. A possible mechanism of energy transfer from Tb3+ to Eu3+ has been investigated by PL spectra and decay measurements. The energy transfer efficiency from Tb3+ to Eu3+ increases linearly with concentration of Eu3+ increasing.  相似文献   

14.
Searching for an efficient non rare earth‐based oxide red phosphor, particularly excitable by light in the wavelength from 380 to 480 nm and unexcitable by green light, is essential for the development of warm white light emitting diodes (WLEDs). Here, we report a promising and orderly‐layered candidate: Sr4Al14O25:Mn4+ with CIE color coordinates (0.722, 0.278). It has higher luminescence efficiency particularly upon blue excitation and is much cheaper than the commercial red phosphor 3.5MgO·0.5MgF2·GeO2:Mn4+ (MMG:Mn4+). In sharp contrast to Eu2+‐doped (oxy)nitrides, the phosphor can be synthesized by a standard solid‐state reaction at 1200°C in air. The effects of flux boron content, environment, and preparation temperature, sintering dwelling time as well as Mn concentration have been systematically investigated for establishing the optimal synthesis conditions. The low temperature emission spectra reveal that there are at least three types of Mn4+ ions in Sr4Al14O25:Mn4+ due to the substitution for the distorted octahedral Al3+ sites. The AlO6 layers where Mn4+ prefers to reside are well separated from one another by AlO4 tetrahedra in one dimension parallel to axis a. This scenario can efficiently isolate Mn4+ ions from local perturbations, thereby enabling the high efficiency of luminescence. The energy transfer rates and mechanism are discussed.  相似文献   

15.
《Ceramics International》2017,43(8):6353-6362
Red phosphors serve an important function as red components of warm white light-emitting diodes (WLEDs). Given their remarkable luminescent properties and low cost, Mn4+-doped phosphors are attracting significant attention. In this study, the novel red phosphor Ba2GdNbO6:Mn4+ was synthesized through high-temperature solid-state reaction. The host Ba2GdNbO6 with a double-perovskite structure was investigated. Scanning electron microscopy and thermogravimetric analysis were performed to evaluate the structure and thermal stability of the phosphor, respectively. PLE and photoluminescence spectra were further used to study the luminescence properties of the phosphor. Moreover, crystal field strength and Racah parameters were calculated to estimate the nephelauxetic effect of Mn4+ on the Ba2GdNbO6 host lattice. Thermal quenching characteristics were also analyzed. The fabricated red-emitting LED revealed its potential application in WLEDs.  相似文献   

16.
《Ceramics International》2023,49(8):12088-12096
Mn4+ activated fluoride red phosphors, as candidate red materials in white light-emitting diodes (WLEDs), have received widespread attention. However, the poor water stability limits their application. Herein, a novel dodec-fluoride red phosphor Na3Li3In2F12:Mn4+ with good waterproof stability was successfully synthesized by solvothermal method. The crystal structure, optical property, micro-morphology, element composition, waterproof property and thermal behavior of Na3Li3In2F12:Mn4+ phosphor were analyzed. Under the 468 nm blue light excitation, the Na3Li3In2F12:Mn4+ phosphor has narrow emission bands in the area of 590–680 nm. Compared with commercial red phosphor K2SiF6:Mn4+, the Na3Li3In2F12:Mn4+ phosphor possesses better waterproof stability. When soaked in water for 360 min, the PL intensity of the Na3Li3In2F12:Mn4+ phosphor remains at initial 80%. Finally, warm WLEDs with CRI of 87 and CCT of 3386 K have been fabricated using blue InGaN chip, YAG:Ce3+ yellow phosphor and Na3Li3In2F12:Mn4+ red phosphor.  相似文献   

17.
For phosphor‐converted warm white light‐emitting diodes (WLEDs), it is essential to find highly efficient red oxide phosphors, which are better chemically stable and benign to environment and can be prepared in a much milder condition. Here, we report a red phosphor LiNaGe4O9:Mn4+ with a quantum yield up to 78% after systematic optimization in synthesis temperature, dopant concentration of Mn4+, and sintering time. Best performance of the phosphor can be reached when it is synthesized in a mild reaction condition, that is, at 850°C for 3 h in air. The integrated emission intensity is more than four times stronger than commercial red phosphor 3.5MgO·0.5MgF2·GeO2:Mn4+ (MFG:Mn4+) under a blue light excitation at 470 nm. Crystal structural analysis reveals that the high efficiency Mn4+ exhibits in the compound is mainly due to the well separation of GeO6 groups from each other by GeO4 tetrahedra in the neighborhood and the ideal substitution of octahedral Ge4+ site by Mn4+ in view of both size and charge matches. The high performance of the phosphor encourages us to apply the blue absorbing red phosphor to WLED, which is based on combination of a blue LED chip and YAG:Ce3+, and the warm perception WLED is therefore achieved with a color temperature of 3353 K.  相似文献   

18.
A series of Ba2Mg1−xMnxP4O13 (x = 0-1.0) and Ba1.94Eu0.06Mg1−xMnxP4O13 (x = 0-0.15) phosphors were prepared by conventional solid-state reaction. X-ray powder diffraction (XRD), the photoluminescence spectra, and the decay curves are investigated. XRD analysis shows that the maximum tolerable substitution of Mn2+ for Mg is about 50 mol% in Ba2MgP4O13. Mn2+-singly doped Ba2MgP4O13 shows weak red-luminescence peaked at about 615 nm. The Eu2+/Mn2+ co-doped phosphor emits two distinctive luminescence bands: a blue one centered at 430 nm originating from Eu2+ and a broad red-emitting one peaked at 615 nm from Mn2+ ions. The luminescence of Mn2+ ions can be greatly enhanced with the co-doping of Eu2+ in Ba2MgP4O13. The efficient energy transfer from Eu2+ to Mn2+ is verified by the excitation and emission spectra together with the luminescence decay curves. The emission colors could be tuned from the blue to the red-purple and eventually to the deep red. The resonance-type energy transfer via a dipole-quadrupole interaction mechanism is supported by the decay lifetime data. The energy transfer efficiency and the critical distance are calculated and discussed. The temperature dependent luminescence spectra of the Eu2+/Mn2+ co-doped phosphor show a good thermal stability on quenching effect.  相似文献   

19.
《Ceramics International》2020,46(3):3264-3274
We report a change in the red photoluminescence of the Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor via doping of singly, doubly and triply ionized ions. The synthesized phosphors show good crystalline nature. The EDS analysis confirms the presence of desired elements in the phosphor samples. The vibrational feature of the phosphor was confirmed by FTIR analysis. The photoluminescence excitation spectra of the phosphor show three peaks at 317, 395 and 467 nm. The Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor emits intense red color on excitations with 395 and 467 nm wavelengths. However, the photoluminescence intensity of the phosphor is larger for 395 nm excitation. When the singly, doubly and triply ionized ions are co-doped in the Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor (i.e. F, WO42−, MoO42−, VO43−, La3+, and Y3+) the photoluminescence intensity of the phosphor is decreased significantly. The decrease in photoluminescence intensity is due to change in local crystal structure created by these ions. Interestingly, the photoluminescence intensity of phosphor increases many times when the (Y3+) ion incorporated phosphor is excited with 317 nm wavelength. The CIE diagram shows color emitted in the red region of visible spectrum and the color purity is larger for triply ionized (Y3+) ion. Thus, the singly, doubly and triply ionized ions activated Na2Sr2Al2PO4Cl9: Eu3+ phosphor may be used in displays devices, photonic devices, solid state lighting and white LEDs.  相似文献   

20.
Developing environment-friendly dual-emission phosphors of both blue–cyan and deep-red lights is desirable for the utilized indoor plant lighting research. Notably, the naked 6s and 6p Bi3+ ions are sensitive to the lattice sites, which emit from Ultraviolet (UV) to red lights in various crystal compounds. Meanwhile, the 2E → 4A2g transition of Mn4+ ions promises its deep-red light emissions, which satisfies the demand for specific wavelength lights for plants growth. Hence, a Bi3+/Mn4+ co-doped Sr2LaGaO5: Bi3+, Mn4+ (SLGO:Bi3+:Mn4+) phosphor was finally synthesized. The phase, micromorphology and luminescent properties were systematically evaluated. Upon excitation at 350 nm light, dual emissions of both blue–cyan (470 nm) and deep-red (718 nm) lights were observed. Besides, due to the pronounced photoluminescence (PL) spectral overlap between Bi3+ and Mn4+ ions, a potential energy transfer process from Bi3+ to Mn4+ ions was confirmed. The relative PL intensities between Bi3+ and Mn4+ ions can be tuned just by adjusting the Mn4+ ion concentration. Besides, Li+ co-doping has been evidenced to improve the deep-red emissions (718 nm) of SLGO:0.005Mn4+ due to charge compensation and rationally designed lattice distortion, together with the improved thermal stability. Finally, the emissions of SLGO:Bi3+, Mn4+, Li+ phosphor suit properly with the absorption of the four fundamental pigments for plant growth, indicating that the prepared phosphorescent materials may have a prospect in plant light-emitting diodes lighting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号