首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructural development during crystallization firing of a commercially-available dental-grade nanostructured lithia-zirconia glass-ceramic (Vita Suprinity® PC) was unraveled using a wide battery of ex-situ and in-situ characterization techniques. It was found that the milling blocks are slightly crystallized glass-ceramics, with a complex chemical composition and consisting of partially de-polymerized glass plus lithium silicate (Li2SiO3) nanocrystals. It was also found that during crystallization firing the glassy matrix first reacts with part of the Li2SiO3 to form lithium disilicate (Li2Si2O5) at ~810?820 °C, and then lithium orthophosphate (Li3PO4) precipitates from the glass. This results in glass-ceramics with abundant nanocrystals embedded in a sparse zirconosilicate glass matrix (containing many other cations subsumed) that, due to its high viscosity, inhibited crystal growth. Therefore, these dental glass-ceramics are not reinforced with zirconia (ZrO2) crystals unless over-fired above ~890 °C and at the expense of its singular nanostructure. Finally, this study opens doors for optimizing the clinical performance of these dental glass-ceramics via microstructural tailoring.  相似文献   

2.
We report a toughening mechanism of Li 2 O-2SiO2 glass-ceramics induced by intriguing anisotropic deformation behavior of lithium disilicate nanocrystal under tensile loadings using molecular dynamics simulations. The nanocrystal undergoes clear brittle cleavage when loaded in the [010] direction, while exhibiting a first-order deformation-induced transition when loaded in the [100] direction. The transition is exclusively facilitated by local Li–O bond breaking, which spreads to the whole sample under continuous loading. This hierarchical deformation mechanism (exclusive Li–O bond breakage prior to any Si–O bond breakage) enables lithium disilicate nanocrystal bearing large amounts of deformation without breaking. We further demonstrate that the toughness of Li 2 O-2SiO2 glass-ceramics can be significantly enhanced by deliberate designs of nanocrystal distributions in glass. The direct observation of this intriguing deformation behavior might inspire new ideas to design tougher lithium disilicate glass-ceramics.  相似文献   

3.
Lithium disilicate glass‐ceramics are widely used as dental ceramics due to their machinability and translucency. In this study, lithium disilicate glass‐ceramic was fabricated through heat treatment of lithium metasilicate glass‐ceramics obtained by hot pressing of glass powder composed of SiO2–Li2O–P2O5–ZrO2–Al2O3–K2O–CeO2 at low temperature. The crystalline phase, microstructure, and mechanical properties were investigated. The results indicated that lithium metasilicate glass‐ceramic with a relative density of higher than 99% was obtained after hot pressing, and glass‐ceramic with interlocked rod‐like Li2Si2O5 crystals and good flexural strength (338 ± 20 MPa) was successfully obtained through heat treatment. The two‐step method was believed to be feasible in tailoring the microstructure and mechanical properties of lithium disilicate glass‐ceramics.  相似文献   

4.
Sol-gel technology is a promising method not only to obtain the batch of the main composition but also to include low additives in glass. In this work, the batches obtained via the sol-gel method have been used to synthesize silicate glass based on the Li2O-SiO2 system with the additives of R′2O and R″O, (R′ = Na, K; R″ = Ca, Mg). The Li2O-SiO2 system without the additives R′ and R″ has been studied by us most completely. It has been determined that the main crystal phase in the glass of Li2O-SiO2 system with Li2O content up to 33 mol % is lithium disilicate, Li2O · 2SiO2. In the range of compositions from 33.8 to 40.7 mol % Li2O, solid solutions based on lithium disilicate are formed; and, starting from 40.7 mol % Li2O, solid solutions based on lithium metasilicate. The kinetic dependences of the number of nucleating lithium disilicate crystals from the time of heat treatment have been obtained at various temperatures of heat treatment. The temperature dependences of the stationary rate of nucleation of crystals have been studied. The results have been compared for the glass prepared with the use of the conventional and sol-gel method. It has been determined that the complication of the composition of glass based on 26Li2O · 74SiO2 (mol %) by the addition of R′ = Na, K; R″ = Ca, Mg affects the morphology of lithium disilicate crystals. The use of the sol-gel method of synthesis of glass leads to a more homogeneous spatial arrangement of crystals in bulk glass, the measure of which (distribution) is the dispersion of the number of traces of crystals per unit area of the section.  相似文献   

5.
A sol-gel method has been proposed for preparing the batch used in the synthesis of a photostructured gold-containing glass of the composition 33.56Li2O · 66.5SiO2. It has been found that the main crystalline phase in the glass of this composition is lithium disilicate Li2O · 2SiO2. The temperature-time dependences of the nucleation rate of lithium disilicate crystals with a gold impurity have been investigated under conditions of X-ray irradiation of the initial glass and without irradiation. It has been shown that, in the absence of X-ray irradiation, the gold impurities do not affect the nucleation of lithium disilicate crystals. It has been established that the use of the sol-gel method for the preparation of the batch for synthesizing photostructured gold-containing glasses leads to a more uniform spatial distribution of gold microimpurities in the bulk of the glass.  相似文献   

6.
The effects of K2O content on sintering and crystallization of glass powder compacts in the Li2O–K2O–Al2O3–SiO2 system were investigated. Glasses featuring SiO2/Li2O molar ratios of 2.69–3.13, far beyond the lithium disilicate (LD-Li2Si2O5) stoichiometry, were produced by conventional melt-quenching technique. The sintering and crystallization behaviour of glass powders was explored using hot stage microscopy (HSM), scanning electron microscopy (SEM), differential thermal (DTA) and X-ray diffraction (XRD) analyses. Increasing K2O content at the expense of SiO2 was shown to lower the temperature of maximum shrinkage, eventually resulting in early densification of the glass-powder compacts. Lithium metasilicate was the main crystalline phase formed upon heat treating the glass powders with higher amounts of K2O. In contrast, lithium disilicate predominantly crystallized from the compositions with lower K2O contents resulting in strong glass–ceramics with high chemical and electrical resistance. The total content of K2O should be kept below 4.63 mol% for obtaining LD-based glass–ceramics.  相似文献   

7.
The purpose of this study was the synthesis of lithium disilicate glass-ceramics in the system SiO2–Al2O3–K2O–Li2O. A total of 8 compositions from three series were prepared. The starting glass compositions 1 and 2 were selected in the leucite–lithium disilicate system with leucite/lithium disilicate weight ratio of 50/50 and 25/75, respectively. Then, production of lithium disilicate glass-ceramics was attempted via solid-state reaction between Li2SiO3 (which was the main crystalline phase in compositions 1 and 2) and SiO2. In the second series of compositions, silica was added to fine glass powders of the compositions 1 and 2 (in weight ratio of 20/100 and 30/100) resulting in the modified compositions 1–20, 1–30, 2–20, and 2–30. In the third series of compositions, excess of silica, in the amount of 30 wt.% and 20 wt.% with respect to the parent compositions 1 and 2, was introduced directly into the glass batch. Specimens, sintered at 800 °C, 850 °C and 900 °C, were tested for density (Archimedes’ method), Vickers hardness (HV), flexural strength (3-point bending tests), and chemical durability. Field emission scanning electron microscopy and X-ray diffraction were employed for crystalline phase analysis of the glass-ceramics. Lithium disilicate precipitated as dominant crystalline phase in the crystallized modified compositions containing colloidal silica as well as in the glass-ceramics 3 and 4 after sintering at 850 °C and 900 °C. Self-glazed effect was observed in the glass-ceramics with compositions 3 and 4, whose 3-point bending strength and microhardness values were 165.3 (25.6) MPa and 201.4 (14.0) MPa, 5.27 (0.48) GPa and 5.34 (0.40) GPa, respectively.  相似文献   

8.
The effect of ZnO/K2O (Z/K) ratio on the crystallization sequence and microstructure of lithium disilicate (Li2Si2O5: LS2) glass-ceramics was carefully investigated for the SiO2-Li2O-K2O-ZnO-P2O5 system. The Z/K ratios of precursor glasses were varied from 0 to 3.5 while the nucleating agent of P2O5 and glass modifiers of ZnO plus K2O were fixed to have 1.5 and 4.5 mol% relative to LS2, respectively. For the samples prepared by two-stage heat treatments of 500 °C for 1 h and 800 °C for 2 h in air, the LS2 nucleation rate was increased with increasing the Z/K ratio due to the variation in crystallization sequence from type II (Li2SiO3: LS) to type I (LS + LS2) in addition to an amorphous phase separation in base glass. Consequently, with increasing the Z/K ratio, the LS2 crystalline phase within the glass matrix continuously changed from larger acicular ones to smaller equiaxed ones.  相似文献   

9.
The phase separation in ultimately homogenized glasses of the lithium silicate system xLi2O · (100 − x)SiO2 (where x = 23.4, 26.0, and 33.5 mol % Li2O) has been investigated. The glasses of these compositions have been homogenized using the previously established special temperature-time conditions, which provide the maximum dehydration and the removal of bubbles from the glass melt. The parameters of nucleation and growth of phase_separated inhomogeneities and homogeneous crystal nucleation have been determined. The absolute values of the stationary nucleation rates I st of lithium disilicate crystals in the 23.4Li2O · 76.6SiO2 and 26Li2O · 74SiO2 glasses with the compositions lying in the metastable phase separation region have been compared with the corresponding rates I st for the glass of the stoichiometric lithium disilicate composition. It has been established that the crystal growth rate have a tendency toward a monotonic increase with an increase in the temperature, whereas the dependences of the crystal growth rate on the time of low-temperature heat treatment exhibit an oscillatory behavior with a monotonic decrease in the absolute value of oscillations. The character of crystallization in glasses with the compositions lying in the phase separation region of the Li2O-SiO2 system is compared with that in the glass of the stoichiometric lithium disilicate composition. The inference has been made that the phase separation weakly affects the nucleation parameters of lithium disilicate and has a strong effect on the crystal growth.  相似文献   

10.
To achieve long-term clinical performance and wider application of glass-ceramic dental restorations, it is urged to enhance the mechanical properties of glass-ceramic materials. In this study, a high-strength lithium disilicate glass-ceramic was developed in a SiO2–Li2O–Al2O3–MgO–P2O5–ZrO2 related glass system, which demonstrates a high flexural strength of 562 ± 107 MPa. In this high-strength glass-ceramic, the microstructure features highly intertwined colonies of lithium disilicate. This novel microstructure effectively contributes to the improvement of flexural strength. The minor crystalline phases (β-quartz, MgAl2Si4O12, and Li3PO4) embedded within the Li2Si2O5 (LS2) crystal colonies and residual glass matrix could further strengthen the glass-ceramic. The development process of such a novel microstructure and its possible formation mechanism are proposed. This material could be an excellent candidate for restorative dental applications up to three-unit posterior bridges.  相似文献   

11.
Transparent and translucent glass-ceramics (GCs) are found in an increasing number of domestic and high-technology applications. In this paper, we evaluated and optimized the effects of two-stage heat treatments on the resulting crystalline phases and microstructure of a glass of the SiO2–Li2O–P2O5–TiO2–CaO–ZnO–Al2O3 system. The objective was to develop a transparent nanostructured glass-ceramic (GC). After numerous heat treatment trials, we found that a long nucleation period of 72 h at 455 °C followed by a crystal growth treatment at 660 °C for 2 h resulted in a highly translucent GC having homogenously distributed nanocrystals. The relatively high amount of P2O5 (2.5 mol%) induced the formation of lithium disilicate as the main crystal phase. We thus developed a GC having crystals under 50 nm, with a high crystallized fraction (52%vol. Li2Si2O5 and 26% vol Li2SiO3), transmittance of approximately 80% in the visible spectrum for 1.2 mm thick specimens, nano hardness of 8.7 ± 0.1 GPa (load of 400 mN), a high elastic modulus of 138 ± 3 GPa as measured by nanoindentation, and good flexural strength (350 ± 40 MPa) as measured by ball-on-3 balls tests. Due to its high content of Li+, this GC has the potential to be chemically strengthened and can be further developed to be used in a number of applications, such as on displays of electronic devices.  相似文献   

12.
The effect of Al2O3 and K2O content on structure, sintering and devitrification behaviour of glasses in the Li2O–SiO2 system along with the properties of the resultant glass–ceramics (GCs) was investigated. Glasses containing Al2O3 and K2O and featuring SiO2/Li2O molar ratios (3.13–4.88) far beyond that of lithium disilicate (Li2Si2O5) stoichiometry were produced by conventional melt-quenching technique along with a bicomponent glass with a composition 23Li2O–77SiO2 (mol.%) (L23S77). The GCs were produced through two different methods: (a) nucleation and crystallization of monolithic bulk glass, (b) sintering and crystallization of glass powder compacts.Scanning electron microscopy (SEM) examination of as cast non-annealed monolithic glasses revealed precipitation of nanosize droplet phase in glassy matrices suggesting the occurrence of phase separation in all investigated compositions. The extent of segregation, as judged from the mean droplet diameter and the packing density of droplet phase, decreased with increasing Al2O3 and K2O content in the glasses. The crystallization of glasses richer in Al2O3 and K2O was dominated by surface nucleation leading to crystallization of lithium metasilicate (Li2SiO3) within the temperature range of 550–900 °C. On the other hand, the glass with lowest amount of Al2O3 and K2O and glass L23S77 were prone to volume nucleation and crystallization, resulting in formation of Li2Si2O5 within the temperature interval of 650–800 °C.Sintering and crystallization behaviour of glass powders was followed by hot stage microscopy (HSM) and differential thermal analysis (DTA), respectively. GCs from composition L23S77 demonstrated high fragility along with low flexural strength and density. The addition of Al2O3 and K2O to Li2O–SiO2 system resulted in improved densification and mechanical strength.  相似文献   

13.
Li2O-Al2O3-SiO2 (LAS) glass-ceramics have important industrial applications and bulk nucleation is usually achieved by using nucleating agents. In particular, P2O5 is an efficient agent in glasses containing a low level of Al2O3 but its role in the first stages of nucleation is not well established. In this study, we combine structural investigations from local to mesoscales to describe the structural evolution during crystallization of LAS glass-ceramics. Local environment is probed using 29Si and 31P MAS-NMR, indicating organization of P in poorly crystallized Li3PO4 species prior to any crystallization. To better understand the detailed nanoscale changes of the glass structure, 31P-31P DQ-DRENAR homonuclear correlation experiments have been carried out, revealing the gradual segregation of P atoms associated with the formation of disordered Li3PO4. Small-angle neutron scattering data also show the apparition of nanoscale heterogeneities associated with Li3PO4 species upon heating treatments and allow the determination of their average sizes. These new structural information enhance our understanding of the role of P in nucleation mechanisms. Nucleation is initiated by gradual change in P environment implying P segregation upon heating treatments, forming disordered Li3PO4 heterogeneities. The segregation of P atoms enables the precipitation of meta- and disilicate phases.  相似文献   

14.
The nucleation and crystallization of glass-ceramics are typically influenced by early phase separation, which can impact glass properties. However, it has been challenging to characterize the nanoscale phase separation and understand the nucleation mechanism of lithium disilicate (L2S) glass-ceramics, which has resulted in some controversy. Here, we raised the direct evidence of nanoscale clustering in the glassy phase prior to formal nucleation and crystallization by element distribution. Firstly, the amorphous Li3PO4 phase formed on the boundary between the phase separation area and residual glass matrix, and then nucleation tended to start on this phase boundary. Furthermore, the effect of phase-separation on nucleation and final crystallize products was illustrated. By sufficient phase-separation, the formation of desired Li2Si2O5 and LiAlSi4O10 microcrystals was effectively motivated, which is prerequisite for high mechanical properties and transparency. We hope this work provides guidance to rationally understand the early phase separation in glass for subsequent controlling crystallization.  相似文献   

15.
《Ceramics International》2023,49(1):216-225
In order to obtain lithium disilicate glass-ceramics for dental restoration with both high strength and high translucency, lithium disilicate glass-ceramics with different MgO contents were prepared by melt-casting and heat treatment method. The effects of MgO content on the crystallization temperature, microstructure and flexural strength of lithium disilicate glass-ceramics were investigated. The results indicate that Mg2+ exists in the form of [MgO4] in the network of lithium disilicate glass-ceramics when the MgO content is 0.56 mol% (M0.56), which is beneficial to increasing the homogeneity and thermal stability of the glass system, and short rod-like lithium disilicate crystals can be formed after heat treatment at 840°C. Thus, the obtained lithium disilicate glass-ceramics exhibit excellent comprehensive performance, with the flexural strength being 312 ± 23 MPa, and the average transmittance of visible light being 37.3% (d = 1.62 mm). Especially, the glass-ceramic sample shows better translucency than the commercially available products. The research results are of great significance for developing high performance lithium disilicate glass ceramics and promoting its broad application in the field of dental restoration.  相似文献   

16.
ZrO2 is an effective nucleation agent for low-expansion lithium–aluminum silicate (LAS) glass–ceramic (GC) with high Al2O3 content. However, the effect of ZrO2 is still not fully understood in LAS glasses with low contents of Al2O3 and P2O5. In this work, the effect of ZrO2 on the phase separation and crystallization of Li2O–Al2O3–SiO2–P2O5 glasses were investigated. The results revealed that ZrO2 significantly increased Tg and the crystallization temperature of Li2SiO3 and Li2Si2O5 crystals. Li3PO4 crystals precipitated preferentially in the glass containing 3.6-mol% ZrO2, wherein Zr was stable in the network and no precipitation of ZrO2 nanocrystals was observed. Moreover, the separation of phosphate-rich phases in the as-quenched glasses increased with the addition of ZrO2. The findings of the study revealed a dual role of ZrO2. First, ZrO2 acted as a glass network former rather than a nucleation agent, increasing glass viscosity and the nucleation barrier of Li2SiO3 through its strong network connectivity. Second, as Zr preferentially combined with non-bridging oxygen to form Si–O–Zr linkages, a sufficient amount of charge-balancing Li+ ions existed in the network, which promoted the separation of phosphate-rich phases. It indicated that the incorporation of ZrO2 contributes to the activation of the nucleation role of P2O5, thus contributing to the formation of nanocrystals and fine microstructure of GCs.  相似文献   

17.
《Ceramics International》2022,48(9):12699-12711
The effect of variation of MgO (1.5, 4.5 and 7.5 mol%) content on glass structure, crystallization behavior, microstructure and mechanical properties in a Li2O–K2O–Na2O–CaO–MgO–ZrO2–Al2O3–P2O5–SiO2 glass system has been reported here. Increased amount of MgO enhanced the participation of Al2O3 as a glass network former along with [SiO4] tetrahedra, reducing the amount of non-bridging oxygen (NBO) and increasing bridging oxygen (BO) amount in glass. The increased BO in glass resulted in a polymerized glass structure which suppressed the crystallization and subsequently increased the crystallization temperature, bulk density, nano hardness, elastic modulus in the glasses as well as the corresponding glass-ceramics. MgO addition caused phase separation in higher MgO (7.5 mol%) containing glass system which resulted in larger crystals. The nano hardness (~10 GPa) and elastic modulus (~127 GPa) values were found to be on a much higher side in 7.5 mol% MgO containing glass-ceramics as compared to lower MgO containing glass-ceramics.  相似文献   

18.
Lithium aluminosilicate glass-ceramics are well known for good transparency, high fracture toughness, low thermal expansion, and good ion exchange ability. In this study, new transparent Li2O-Al2O3-SiO2 (LAS) glass-ceramics with petalite and β-spodumene solid solution as the major crystalline phases were invented for favorable mechanical properties and potential for application in the hollowware, tableware, container, and plate glass industries. Crystal phases are mainly influenced by the ratio of Al2O3 to SiO2 concentrations. The concentration of SiO2 required to form specific crystalline phases in the glass-ceramics is higher than that inferred from the ternary phase diagram. Al2O3 content is required to be sufficiently high for the formation of crystals, instead of balancing excess amounts of Li2O in the glass. The average transmittances of 2.0 ± 0.1 mm thickness samples in visible light regions (400–700 nm) can reach more than 80% with crystal sizes of 20–40 nm. Transmittance is significantly decreased for heat treatments around 710°C, due to the high growth rate of β-spodumene solid solution crystals. Vickers hardness, indentation toughness, and crack probabilities of transparent LAS glass-ceramics are significantly improved compared with standard soda lime silicate glass, due to the crack bridging and deflection of crystal grains.  相似文献   

19.
《Ceramics International》2017,43(13):9769-9777
Glass ceramics based on the system Li2O/Al2O3/SiO2 (LAS) often show a coefficient of thermal expansion close to zero. Although these glass-ceramics are of high economic importance, the fundamentals of the crystallization process are still not fully understood. In this paper, the effect of ZrO2 addition as a sole nucleation agent on the crystallization of the LAS glass is described predominantly using transmission electron microscopy and X-ray diffraction. The composition of the studied green glass was close to that of the commercially available Robax™ glass (Schott AG), which, however, contained both, ZrO2 and TiO2 as nucleating agents. It was found that during thermal treatment, in a first step, already at temperatures around 10–20 K below the glass transition temperature, Tg, ZrO2 nanocrystals with sizes in the range from 5 to 15 nm were precipitated. The next crystalline phase that forms during the crystallization process was LAS with a structure similar to the hexagonal high temperature phase of quartz. These crystals were much larger than the ZrO2 crystals. If thermal treatment was carried out at higher temperatures, a dense network of LAS crystals was formed. Differently shaped crystals in samples with different thermal history were visualized, and an enrichment of Ba and Sb in the residual glass phase in the late stages of thermal treatment was found. Also, an enrichment of aluminum around the ZrO2 crystals was evident, which is a hint at a preceding droplet phase separation from which the ZrO2 crystals were precipitated. The crystallization is notably different from that of mixed ZrO2/TiO2 nucleating agents used in commercial lithium alumosilicate glass ceramics.  相似文献   

20.
The price of lithium-containing minerals and other chemical materials continues to increase, resulting in an increase in the production cost of Li2O-Al2O3-SiO2 (LAS) system glass-ceramics. In the LAS glass-ceramics component, the reduction in the amount of Li2O used can reduce the cost of the product. It is worthwhile to study whether it is possible to prepare glass-ceramics with low expansion properties under low Li2O content. The effect of Li2O content on the glass-ceramics of LAS system was studied. In this paper, spodumene was used as the main raw material, and TiO2 and ZrO2 were added as crystal nucleating agents to prepare transparent glass-ceramics with low expansion coefficient. The effects of the change of Li2O content on the crystal phase and microstructure of glass-ceramics were investigated by XRD, DSC, FTIR and SEM. The results show that the main crystalline phase of the low expansion transparent glass-ceramics is β-quartz solid solution. When Li2O content is in the range of 2.99 wt% to 4.13 wt%, low expansion glass ceramics can be prepared by an appropriate method. With the increase of Li2O content, the average coefficient of thermal expansion (CTE) in the temperature range of 30 °C–300 °C shows a decreasing trend. When Li2O content is in the range of 3.51 wt% to 4.13 wt%, the thermal expansion coefficient of the glass ceramics is extremely small, and even a negative expansion coefficient occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号