首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During nuclear waste vitrification, a melter feed (a slurry mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed‐to‐glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low‐activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to the high‐level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.  相似文献   

2.
High‐level waste feed composition affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a cold cap layer that floats on the molten glass where most feed‐to‐glass reactions occur. Data from X‐ray computed tomography imaging of melting pellets comprised of a simulated high‐aluminum feed reveal the morphology of bubbles, known as the primary foam, for various feed compositions at temperatures between 600°C and 1040°C. These feeds were formulated to make glasses with viscosities ranging from 0.5 to 9.5 Pa s at 1150°C, which was accomplished by changing the SiO2/(B2O3+Na2O+Li2O) ratio in the final glass. Pellet dimensions and profile area, average and maximum bubble areas, bubble diameter, and void fraction were evaluated. The feed viscosity strongly affects the onset of the primary foaming and the foam collapse temperature. Despite the decreasing amount of gas‐evolving components (Li2CO3, H3BO3, and Na2CO3), as the feed viscosity increases, the measured foam expansion rate does not decrease. This suggests that the primary foaming is not only affected by changes in the primary melt viscosity but also by the compositional reaction kinetic effects. The temperature‐dependent foam morphological data will be used to inform cold cap model development for a high‐level radioactive waste glass melter.  相似文献   

3.
The concentration of sulfur in Hanford low‐activity waste (LAW) glass melter feed will be maintained below the point where the salt accumulates on the melt surface. The allowable concentrations may range from near zero to over 2.05 wt% (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have traditionally been placed on sulfur loading in melter feed, which in turn significantly increases the amount of LAW glass that will be produced. Crucible‐scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. An empirical model was developed to predict the solubility of SO3 in glass based on 253 simulated Hanford LAW glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the maximum amount of sulfur in melter feed that did not form a salt layer in 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options (e.g., scale of supplemental LAW treatment facility, and pretreatment facility performance requirements). The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that increase sulfur solubility most are Li2O > V2O5 > CaO ≈ P2O5 > Na2O ≈ B2O3 > K2O. The components that decrease sulfur solubility most are Cl > Cr2O3 > Al2O3 > ZrO2 ≈ SnO2 > Others (i.e., the sum of minor components) ≈SiO2. The order of component effects is similar to previous literature data, in most cases.  相似文献   

4.
Nuclear waste can be vitrified by mixing it with glass‐forming and ‐modifying additives. The resulting feed is charged into an electric glass melter. To comprehend melting behavior of a high‐alumina melter feed, we monitored the volume expansion of pellets in response to heating at different heating rates. The feeds were prepared with different particle sizes of quartz (the major additive component) and with varied silica‐to‐fluxes ratio to investigate the glass melt viscosity effects. Also, we used additional melter feeds with additives premelted into glass frit. The volume of pellets was nearly constant at temperatures <600°C. After a short period of volume shrinkage at ~600°C‐700°C, foam generation produced massive volume expansion. The low heat conductivity of foam hinders the transfer of heat from molten glass to the reacting feed. The extent of foaming increased with faster heating and higher melt viscosity, and decreased with increasing size of quartz particles and fritting of the additives. Volume expansion data are needed for the mathematical modeling of the cold cap.  相似文献   

5.
During the vitrification of radioactive waste in a Joule‐heated melter, aqueous melter feed slurry forms a cold cap, a reacting and melting material, which floats on the surface of the molten glass. The rheological behavior of the feed affects cold cap formation and shape, and is vital for modeling the feed‐to‐melt conversion process. We used slurry feed simulant and fast‐dried slurry solids representing the cold cap to investigate the rheological behavior of the feed as it transforms into glass. Both low‐temperature and high‐temperature rheometry were performed and a new scheme was applied to estimate the feed viscosity. This study shows that the conversion advances in four sequential stages that form distinct regions in the cold cap: (i) a fast‐spreading boiling slurry from which water evaporates, (ii) a porous solid region (viscosity > 108 Pa s) containing reacting solids and molten salts, (iii) a plastic region in which glass‐forming melt connects the refractory solids (~108 to ~10Pa s), and (iv) a viscous foam layer in which the viscosity drops from ~105 to ~101 Pa s. The implications for the mathematical modeling of the cold cap are discussed.  相似文献   

6.
Experimental work has been carried out on the mixed reforming reaction, i.e., simultaneous steam and CO2 reforming of methane under a wide range of feed compositions and four different reaction temperatures from 700 °C to 850 °C using a commercial steam reforming catalyst. The experiments were conducted for a CO2/CH4 ratio from 0 to 2 and a steam to methane ratio from 3 to 5. The effect of CO2/CH4 ratio on the exit H2/CO ratio and the conversions of the reactants indicate that the dry reforming reaction is dominant under increased carbon dioxide in the feed. Steam reforming of typical steam hydrogasification product gas consisting of CO, H2 and CO2 in addition to steam and methane has also been investigated. The H2/CO ratio of the product synthesis gas varies from 4.3 to 3.7 and from 4.8 to 4.1 depending on the feed composition and reaction temperature. The CO/CO2 ratios of the synthesis gas varied from 1.9 to 2.9 and 2.0 to 3.3. The results are compared with simulation results obtained through the Aspen Plus process simulation tool. The results demonstrate that a coupled steam hydrogasification and reforming process can generate a synthesis gas with a flexible H2/CO ratio from carbon-containing feedstocks.  相似文献   

7.
The effect of different preparation methods on the physicochemical property, reforming reactivity, stability and carbon deposition resistance of cobalt/carbon catalyst was investigated through fixed bed flow reaction. The catalysts were prepared by the impregnation and characterized by the XRD and scanning electron microscopy (SEM). The result indicated that the active components of cobalt/carbon catalyst prepared by using ultrasonic wave distributed evenly, activity was high and the loading time was short. The Co/Carbon catalyst prepared by incipient-wetness impregnation, 10 wt% loading and 300 °C calcination, achieved the best activity. Furthermore, the effect of reaction temperature, air speed and CH4/CO2 ratio on the catalyst activity and CO/H2 ratio in products was investigated. It was found that the conversion of CO2 and CH4 increased with the increasing of reaction temperature. However, the conversion of CO2 and CH4 increased first and then decreased with the increasing of air speed. With the increasing of CH4/CO2 in feed gas, both the catalyst activity and the CO/H2 ratio in products decreased.  相似文献   

8.
The heat conductivity (λ) and the thermal diffusivity (a) of reacting glass batch, or melter feed, control the heat flux into and within the cold cap, a layer of reacting material floating on the pool of molten glass in an all‐electric continuous waste glass melter. After previously estimating λ of melter feed at temperatures up to 680°C, we focus in this work on the λ(T) function at > 680°C, at which the feed material becomes foamy. We used a customized experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples, which monitored the evolution of the temperature field while the crucible with feed was heated at a constant rate from room temperature up to 1100°C. Approximating measured temperature profiles by polynomial functions, we used the energy equation to estimate the λ(T) approximation function, which we subsequently optimized using the finite‐volume method combined with least‐squares analysis. The heat conductivity increased as the temperature increased until the feed began to expand into foam, at which point the conductivity dropped. It began to increase again as the foam turned into a bubble‐free glassmelt. We discuss the implications of this behavior for the mathematical modeling of the cold cap.  相似文献   

9.
Fischer–Tropsch (FT) synthesis reaction was performed using ferrihydrite catalyst. During 100 h of FT synthesis reaction, composition changes of the reaction product were studied according to the reaction time using an on-line GC, and the final FT products collected in traps were analyzed by GC–MS. Also, an effect of gas feed ratio of H2/CO on the selectivity of the synthetic products was studied. As a H2/CO feed ratio increased, not only CO conversion and activity of catalyst improved two times, but also CO2 conversion was reduced by approximately 40% thereby improving the efficiency of catalyst significantly.  相似文献   

10.
Jyh-Cherng Chen  Jian-Sheng Huang 《Fuel》2007,86(17-18):2824-2832
For mitigating the emission of greenhouse gas CO2 from general air combustion systems, a clean combustion technology O2/RFG is in development. The O2/RFG combustion technology can significantly enhance the CO2 concentration in the flue gas; however, using almost pure oxygen or pure CO2 as feed gas is uneconomic and impractical. As a result, this study proposes a modified O2/RFG combustion technology in which the minimum pure oxygen is mixed with the recycled flue gas and air to serve as the feed gas. The effects of different feed gas compositions and ratios of recycled flue gas on the emission characteristics of CO2, CO and NOx during the plastics incineration are investigated by theoretical and experimental approaches.Theoretical calculations were carried out by a thermodynamic equilibrium program and the results indicated that the emissions of CO2 were increased with the O2 concentrations in the feed gas and the ratios of recycled flue gas increased. Experimental results did not have the same trends with theoretical calculations. The best feed gas composition of the modified O2/RFG combustion was 40% O2 + 60% N2 and the best ratio of recycled flue gas was 15%. As the O2 concentration in feed gas and the ratio of recycled flue gas increased, the total flow rates and pressures of feed gas reduced. The mixing of solid waste and feed gas was incomplete and the formation of CO2 decreased. Moreover, the emission of CO was decreased as the O2 concentration in feed gas and the ratio of recycled flue gas increased. The emission of NOx gradually increased with rising the ratio of recycled flue gas at lower O2 concentration (<40%) but decreased at higher O2 concentration (>60%).  相似文献   

11.
The Fischer–Tropsch synthesis over Co/γ-Al2O3 and Co–Re/γ-Al2O3 was investigated in a fixed-bed reactor at 20 bar and 483 K using feed gases with molar H2/CO ratios of 2.1, 1.5 and 1.0 simulating synthesis gas derived from biomass. With lower H2/CO ratios in the feed, the CO conversion and the CH4 selectivity decreased, while the C5+ selectivity and olefin/paraffin ratio for C2–C4 increased slightly. The water–gas shift activity was low for both catalysts, resulting in high molar usage ratios of H2/CO (close to 2.0), even at the lower inlet ratios (i.e. 1.5 and 1.0). For both catalysts, the drop in the production rate of hydrocarbons when shifting from an inlet ratio of 2.1 to 1.5 was significant mainly because the H2/CO usage ratio did not follow the change in the inlet ratio. The hydrocarbon selectivities were rather similar for inlet H2/CO ratios of 2.1 and 1.5, while significantly deviating from those for an inlet ratio of 1.0. With the studied catalysts, it is possible to utilize the advantages of an inlet ratio of 1.0 (higher selectivity to C5+, lower selectivity to CH4, no water–gas shifting of the bio-syngas needed prior to the FT reactor) if a low syngas conversion is accepted.  相似文献   

12.
Liquid phase direct synthesis of dimethyl ether (LPDME™) under various operating conditions (temperature, H2/CO molar ratio of feed) was conducted in a mechanically agitated slurry reactor system. Each run was monitored for 60 h time on stream (TOS) in order to confirm the high activity and long-term stability of a bi-functional catalytic system (CuO–ZnO–Al2O3/H-MFI-90). Statistical experimental design was applied for determining the optimum operating conditions under which the catalytic system shows the highest performance. A significant improvement in the performance of the bi-functional catalyst was observed when the temperature and H2/CO molar ratio of feed were increased from 200 to 240 °C and 1 to 2, respectively at a constant pressure of 35 bar and GHSV equal to 1100 mLn/(g-cat h). CO conversion was increased from 9.1 mol% at T = 200 °C and H2/CO = 1 to 79.6 mol% at T = 240 °C and H2/CO = 2 and the yield and selectivity of DME also increased from 7.11% to 47.05% and 41.57% to 59.96%, (molar basis) respectively. No significant deactivation has been observed during 60 h TOS at different operating conditions. Furthermore, from the main effect plots and response table results, it was concluded that the most effective factor on activity and stability of bi-functional catalytic system is temperature.  相似文献   

13.
The alumina powder disperses in molten sucrose due to the hydrophilic interaction between the particle surface and sucrose hydroxyls. The thermo-foaming of the dispersions is due to the bubbles created by the water vapour produced by the OH condensation at 150 °C which are stabilized by the alumina particles adsorbed on the gas–liquid interface as well as the increase in viscosity. The foaming time, the foam setting time and the foam volume depend on the alumina powder to sucrose weight ratio. The alumina foams have interconnected cellular microstructure and the cells are having a near spherical morphology. The porosity (97.84–93.29 vol.%.) decreased and the average cell size (0.54–1.2 mm) increased with the increase in alumina powder to sucrose weight ratio (0.4–1.4). The alumina foams with density in the range of 0.239–0.267 g/cc showed compressive strength in the range of 1.02–1.47 MPa.  相似文献   

14.
Hydrogen production was prepared via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system. Low-cost catalyst dolomite was chosen for the primary steam reforming of bio-oil in consideration of the unavoidable deactivation caused by direct contact of metal catalyst and bio-oil itself. Nickel-based catalyst Ni/MgO was used in the second stage to increase the purity and the yield of desirable gas product further. Influential parameters such as temperature, steam to carbon ratio (S/C, S/CH4), and material space velocity (WBHSV, GHSV) both for the first and the second reaction stages on gas product yield, carbon selectivity of gas product, CH4 conversion as well as purity of desirable gas product were investigated. High temperature (> 850 °C) and high S/C (> 12) are necessary for efficient conversion of bio-oil to desirable gas product in the first steam reforming stage. Low WBHSV favors the increase of any gas product yield at any selected temperature and the overall conversion of bio-oil to gas product increases accordingly. Nickel-based catalyst Ni/MgO is effective in purification stage and 100% conversion of CH4 can be obtained under the conditions of S/CH4 no less than 2 and temperature no less than 800 °C. Low GHSV favors the CH4 conversion and the maximum CH4 conversion 100%, desirable gas product purity 100%, and potential hydrogen yield 81.1% can be obtained at 800 °C provided that GHSV is no more than 3600 h− 1. Carbon deposition behaviors in one-stage reactor prove that the steam reforming of crude bio-oil in a two-stage fixed bed reaction system is necessary and significant.  相似文献   

15.
《Ceramics International》2017,43(16):13113-13118
Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This paper is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O2 partial pressure, as they evolve during the feed-to-glass conversion.  相似文献   

16.
《Fuel》2006,85(5-6):803-806
The characteristics of hydrogasification to generate substitute natural gas (SNG) by using various bituminous coals such as Alaska, Cyprus, Curragh, and Datong have been determined in an entrained-flow hydrogasifier (0.025 m I.D.×1 m high) with high pressure coal feeder and data acquisition system. The effects of reaction pressure (60–80 atm), reaction temperature (600–800 °C) and H2/coal ratio (0.3–0.5) on composition of product gas and carbon conversion have been determined. The concentration of SNG and carbon conversion increased with an increasing of reaction pressure and temperature, but the carbon conversion and concentration of each bituminous coal were quite different because of different coal properties. Also the H2/coal ratio affected the carbon conversion and the concentration of SNG.  相似文献   

17.
A combinatorial approach is used to investigate several bimetallic catalytic systems and the promoter effect on these catalysts to develop highly active and selective catalysts for direct epoxidation of propylene to propylene oxide (PO) using molecular oxygen. 2%Cu/5%Ru/c-SiO2 catalyst yielded the highest performance with high propylene conversion and PO selectivity among the bimetallic catalytic systems including silver, ruthenium, manganese and copper metals. On the other hand, the most effective catalyst and promoter in the epoxidation reaction was determined to be sodium chloride promoted Cu–Ru catalyst supported over SiO2 with 36% selectivity & 9.6% conversion (3.46% yield) at 300 °C and 0.5 feed gas ratio (propylene/oxygen).  相似文献   

18.
The methanol steam reforming (MSR) reaction was studied by using both a dense Pd-Ag membrane reactor (MR) and a fixed bed reactor (FBR). Both the FBR and the MR were packed with a new catalyst based on CuOAl2O3ZnOMgO, having an upper temperature limit of around 350 °C. A constant sweep gas flow rate in counter-current mode was used in MR and the experiments were carried out by varying the water/methanol feed molar ratio in the range 3/1–9/1 and the reaction temperature in the range 250–300 °C. The catalyst shows high activity and selectivity towards the CO2 and the H2 formation in the temperature range investigated. Under the same operative conditions, the MR shows higher conversions than FBR and, in particular, at 300 °C and H2O/CH3OH molar ratio higher than 5/1 the MR shows complete methanol conversion.  相似文献   

19.
Decomposition of tetrafluorocarbon in dielectric barrier discharge reactor   总被引:1,自引:0,他引:1  
The decomposition of CF4 in dielectric barrier discharge at atmospheric pressure was examined. The effect of O2 contents, N2 contents, and total flow rate on CF4 conversion was experimentally investigated. The maximum conversion of CF4 was about 87% at 5 kV, 15 kHz for the feed gas stream containing 5 sccm CF4, 7.5 sccm O2, and 187.5 sccm Ar. CO, CO2, and COF2 were the main products when O2 was used as the additive gas. NOx was produced when N2 was used as the additive gas. The conversion of CF4 was increased while the applied voltage and the residence time were increased. When nitrogen was added to argon as the diluent gas, the conversion of CF4 was decreased with the increase of the nitrogen content.  相似文献   

20.

Abstract  

Cellobiose hydrolysis into glucose was chosen as a model system for cellulose breakdown to investigate glycosidic bond cleavage. The hydrolysis was enhanced by increased acidity in an inert gas medium, while air-assisted hydrolysis with a neutral solution achieved over 70% glucose yield. Hydrogen peroxide, as a stronger oxidant than air, converted cellobiose to carboxyl compounds, which lowered the glucose selectivity. At 150 °C, the selectivity from cellobiose to glucose was very low on porous γ-Al2O3 supported catalysts, even lower than without a catalyst. When the active metals were prepared on non-porous supports such as spherical alumina (α phase), the overall yield of glucose was dramatically improved at 120 °C. Similar improvements were obtained for another disaccharide model, sucrose, which achieved greater than 90% sucrose conversion with selectivity in excess of 90% at 80 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号