首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Up-conversion luminescent (UCL) materials are excellent candidate for optical anti-counterfeiting and the exploitation of multi-wavelength NIR light triggered UC phosphors with tunable color emission is essential for reliable anti-counterfeiting technology. Herein, a series of lanthanide ions (Er3+, Er3+–Ho3+, and Yb3+–Tm3+) doped BaTiO3 submicrometer particles are synthesized through a modified hydrothermal procedure. XRD and SEM measurements were carried out to identify the structure and morphology of the samples and their UCL properties under 808, 980, and 1550 nm NIR excitation are investigated. Er3+ singly doped sample exhibits Er3+ concentration-dependent and excitation wavelength-dependent emission color from green to yellow and orange. The corresponding UC mechanisms under three NIR light excitation are clarified. Pure red emission under 1550-nm excitation was obtained by introducing small amount of Ho3+ and the fluorescent lifetime test was used to confirm the energy transfer from Er3+ to Ho3+. In addition, Yb3+–Tm3+ co-doped sample shows intense blue emission from 1G4 → 3H6 transition of Tm3+ under 980-nm excitation. As a proof of concept, the designed pattern using phosphors with red, green, and blue three primary color emissions under 1550, 808, and 980 nm NIR excitation was displayed to demonstrate their anti-counterfeiting application.  相似文献   

2.
A series of Er3+/Yb3+ co-doped Cs3GdGe3O9 (CGG) phosphors were prepared by solid-phase sintering method, and the microstructure and upconversion luminescence (UCL) properties were tested by variable-temperature X-ray diffractometry and variable-temperature spectrometer. Abnormal UCL phenomena were found, which include UCL intensity continuously increasing under 980 nm laser continuous irradiation and UCL thermal enhancement. After 10 min of continuous irradiation by 980 nm laser at 513 K, the UCL intensity increased 2.91 times compared with the initial UCL intensity. The phenomenon is due to the electron releasing of host defects. The green UCL intensity of CGG:0.1Er3+/0.2Yb3+ decreases at 303–423 K and increases at 423–723 K, which reaches 13.23 times compared with that at 423 K. The phenomenon is due to Er3+–Yb3+ distance change by temperature and phonon-assisted transitions. In addition, the absolute temperature sensitivities of samples are calculated by luminescence intensity ratio technology, the maximum absolute sensitivity of CGG:0.1Er3+/0.4Yb3+ is 0.00691 K−1 at 546 K, and the maximum relative sensitivity of CGG:0.1Er3+/0.1Yb3+ is 0.01224 K−1 at 303 K. These results indicate that CGG:Er3+/Yb3+ phosphors can be used as a high-temperature optical thermometer.  相似文献   

3.
Spectral conversion technology based on NaYF4:Yb3+, Er3+ upconversion nanoparticles was extensively used to improve photovoltaic conversion efficiency of solar cells. However, the response mismatch between absorption of semiconductors and upconversion luminescence (UCL) limits the application of spectral conversion technology. Nonstoichiometric WO2.72 nanoparticles display the broad absorption from visible to near-infrared region due to the presence of oxygen vacancy, which is overlapped with the UCL of NaYF4:Yb3+, Er3+ nanoparticles. Thus, the combination between NaYF4:Yb3+, Er3+ nanoparticles, and nonstoichiometric WO2.72 provides a possibility for designing a novel UCL spectral converted solar cells. In this work, composite film consisted of NaYF4:Yb3+, Er3+ nanoparticles, and WO2.72 nanofibers was prepared. The UCL of NaYF4:Yb3+, Er3+/WO2.72 film was decreased in contrast to pure NaYF4:Yb3+, Er3+ nanoparticles due to energy transfer from NaYF4:Yb3+, Er3+ nanoparticles to WO2.72 nanofibers. The NaYF4:Yb3+, E3+/WO2.72film exhibits the photocurrent generation upon the 980 nm excitation. This novel UCL spectral converted solar cells based on the broad absorption of defects in the WO2.72 host will provide a novel view for photovoltaic devices.  相似文献   

4.
《Ceramics International》2017,43(14):10881-10888
A series of co-doped (Yb3+/Er3+): Li2O-LiF-B2O3-ZnO glasses were prepared by standard melt quenching technique. Structural and morphological studies were carried out by XRD and FESEM. Phonon energy dynamics have been clearly elucidated by Laser Raman analysis. The pertinent absorption bands were observed in optical absorption spectra of singly doped and co-doped Yb3+/Er3+: LBZ glasses. We have been observed a strong up-conversion red emission pertaining to Er3+ ions at 1.0 mol% under the excitation of 980 nm. However, the up-conversion and down conversion (1.53 µm) emission intensities were remarkably enhanced with the addition of Yb3+ ions to Er3+: LBZ glasses due to energy transfer from Yb3+ to Er3+. Up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses exhibits three strong emissions at 480 nm, 541 nm and 610 nm which are assigned with corresponding electronic transitions of 2H9/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 respectively. Consequently, the green to red ratio values (G/R) also supports the strong up-conversion emission. The Commission International de E′clairage coordinates and correlated color temperatures (CCT) were calculated from their up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses. The obtained chromaticity coordinates for optimized glass (0.332, 0.337) with CCT value at 5520 K are very close to the standard white colorimetric point in cool white region. These results could be suggested that the obtained co-doped (Yb3+/Er3+): LBZ glasses are promising candidates for w-LEDs applications.  相似文献   

5.
This work reports on the energy transfer efficiency for Nd3+/Yb3+ co‐doped tellurite glasses (80TO2‐20WO3, in mol%,). The correlation between Yb3+ ion concentration and the downconversion mechanism was investigated using optical and thermal lens spectroscopies, which enabled investigation of the radiative and nonradiative processes, respectively, involved in energy transfer from neodymium to ytterbium. The Nd3+ near‐infrared fluorescence disappeared almost entirely when the maximum concentration of Yb3+ ions (4 mol%) was doped into the host. In contrast, there was a corresponding increase in the ytterbium emission at around 980 nm. When ytterbium was added, there was also a simultaneous reduction in the amount of heat generated by the sample due to a reduction in the nonradiative decay rate, corroborating the suspected high energy transfer efficiency of Nd3+→Yb3+. The results indicate that tungsten‐tellurite glasses may be of potential use in solar cells for matching the solar emission spectrum to the semiconductor cell.  相似文献   

6.
《Ceramics International》2023,49(13):21872-21882
The near-infrared (NIR) luminescence in S+E+O bands of tellurite glasses doped with Nd3+/Tm3+ and Ag nanoparticles (NPs) was investigated. The tellurite glasses were prepared by melt-quenching and heat-treated techniques. Under the excitation of 808 nm laser, Nd3+/Tm3+ doped tellurite glasses produced three NIR luminescence bands of 1.33, 1.47 and 1.85 μm, originating from Nd3+:4F3/24I13/2, Tm3+:3H43F4 and Tm3+:3F43H6 transitions respectively. Interestingly, a broadband luminescence spectrum ranging from 1280 to 1550 nm with the FWHM (full width at half maximum) about 201 nm was obtained due to the overlapping of the first two NIR bands. Further, the peak intensity of this broadband luminescence was increased by 75% after the introduction of Ag NPs with diameter in 10–20 nm. The analysis of fluorescence decay shows that compared with the enhanced local electric field, the energy transfer from Ag species to Nd3+ and Tm3+ ions plays a major role in luminescence enhancement. The findings in this work indicate that tellurite glass co-doped with Nd3+/Tm3+ and Ag NPs is a potential gain material applied in the S+E+O-band photonic devices.  相似文献   

7.
《Ceramics International》2021,47(18):26025-26033
The localized surface plasmon resonance (LSPR) absorption peaks of semiconductor nanocrystals are mainly concentrated in the infrared band, and the absorption characteristics can be controlled by the amount of element doping. The coupling of upconversion nanocrystals (UCNPs) and semiconductor nanocrystals can improve the upconversion luminescence (UCL) of rare-earth ions. Here, the LSPR absorption and morphology of the semiconductor nanocrystalline TiO2: W were adjusted by using ammonium fluoride during synthesis. Significant absorption enhancement of TiO2: W in the near-infrared region was obtained to enhance the UCL of NaYF4: Yb3+, Er3+. The Glass/NaYF4: Yb3+, Er3+/TiO2: W@SiO2 layered structure films were fabricated through spin coating. Compared with Glass/NaYF4: Yb3+, Er3+, the green and red lights of the Glass/NaYF4: Yb3+, Er3+/TiO2: W@SiO2 films were enhanced by 15.9 and 17.8 times, respectively. The UCL enhancement of Glass/NaYF4: Yb3+, Er3+/TiO2: W@SiO2 was derived from the LSPR property of TiO2: W through the enhancement of the excitation. The present work is important for possible applications of these layered structures as biomarkers, photocatalysts, flexible materials, and photoluminescence display panels.  相似文献   

8.
A novel upconversion luminescence transparent glass has been successfully synthesized from Er3+/Yb3+ co-doped zeolite powder by Spark Plasma Sintering (SPS) method through the order–disorder transition process. XRD was used to detect the order–disorder transition process of each phase after SPS. These zeolite-derived silica glasses showed enhanced upconversion luminescence under the excitation of 980 nm diode laser, which was caused by the change of phonon energy according to the results of Raman spectrum, and the corresponding energy transfer mechanism was also discussed in detail.  相似文献   

9.
《Ceramics International》2022,48(17):24649-24655
Generally, lanthanum ions doped positive expansion and negative expansion materials exhibit thermal quenching and enhancement of upconversion luminescence (UCL), respectively. Combining the UCL characteristics of positive expansion and negative expansion lattices is of importance for developing efficient temperature sensing systems. Here, positive expansion TiO2:Yb3+, Er3+ three dimensionally ordered macroporous film was prepared by the template-assisted approach, and the Yb2W3O12: Er3+ solution was filled into the TiO2: Yb3+, Er3+ three dimensionally ordered macroporous film. After secondary sintering, the shell of negative expansion Yb2W3O12: Er3+was formed on the surface of TiO2:Yb3+/Er3+ core. Under 980 nm excitation, the red and green UCL is predominate for the spectra of TiO2:Yb3+/Er3+ core and Yb2W3O12: Er3+ shell, respectively. With the measurement temperature increasing, the green UCL from negative expansion Yb2W3O12: Er3+ shell increases, while the red UCL from positive expansion TiO2:Yb3+, Er3+ core decreases. The performance of temperature sensing was characterized by the monitoring the UCL intensity ratio between 525 nm and 660 nm. The temperature sensitivity is about 1.12% K?1, which is larger than that of thermally coupled FIR technology. We believed that the present work is instructive for developing new generation temperature sensor.  相似文献   

10.
《Ceramics International》2022,48(4):5267-5273
Yb3+/Ho3+ codoped and Yb3+/Er3+/Ho3+ tridoped TeO2–BaF2–LaF3–La2O3 (TBLL) fluorotellurite glasses with low OH? absorption (0.026 cm-1), high glass transition temperature (434 °C) and low phonon energy (784 cm-1) were prepared. Their mid-infrared fluorescence properties and related energy transfer (ET) mechanism were studied under 980 nm excitation. A strong emission at 2.85 μm was realized in Yb3+/Ho3+ codoped tellurite glass, which was attributed to the high-efficiency ET from Yb3+ ions to Ho3+, and the ET efficiency was 91.1%. Further introduction of Er3+ ions induced stronger 2.85 μm emission, and the ET efficiency was improved to 96.2%, ascribed to the establishment of more ET channels and Er3+ ions playing the role of ET bridge between Yb3+ and Ho3+ ions. These results indicate that the Yb3+/Er3+/Ho3+ tridoped tellurite glass could be a hopeful gain medium material for the ~3 μm fiber laser.  相似文献   

11.
Upconversion glasses are capable of converting the sub‐bandgap NIR light into photons of a particular wavelength which can be efficiently utilized by solar cells. Herein, the Yb3+/Er3+ co‐doped fluorotellurite upconversion glasses were prepared. The most intense upconversion luminescence (UCL) under 980‐nm LD excitation was obtained in the glass with Yb3+‐to‐Er3+ molar ratio of 10:1. The dependences of UCL on the pump power and temperature were investigated. The UCL can be mainly attributed to the two‐photon involved energy transfer processes and is very stable to the change in temperature even when heated up to 200°C. The subsequent implementation of the glass as upconverter for a MAPbI3‐xClx‐based perovskite solar cell (PSC) resulted in an open circuit voltage of 0.83 V and a short circuit current density of 0.32 mA/cm2. This application of upconversion glass for enhancing the NIR light harvesting offers a promising way to improve the photo‐electric conversion efficiencies of PSCs.  相似文献   

12.
In this paper, we study the influence of Cr3+ on yellowish-green upconversion (UC) emission and the energy transfer (ET) of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 (SZNL) zinc silicate glasses under excitation of the 980 nm laser diode (LD). The influence of Cr3+ on enhancing the red UC emission of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 zinc silicate glasses under the excitation of 980nm LD was also investigated. The ET processes between Yb3+, Cr3+, and Er3+, together with the combination of Yb3+-Cr3+-Er3+, which led to the green UC emission intensity of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 zinc silicate glasses bands centered at ~546 nm have been significantly enhanced. By increasing the concentration of Cr3+ from 0 up to 5 mol.%, we can locate the Commission Internationale de l'éclairage (CIE) 1931 (x; y) chromaticity coordinates for UC emissions of Er3+/Cr3+/Yb3+ tri-doped in the central position of the yellowish-green color region of CIE 1931 chromaticity diagram. Besides, the ET processes between the Yb3+, Cr3+, and Er3+ are also proposed and discussed.  相似文献   

13.
Lu2W2.5Mo0.5O12: Er3+/Yb3+ phosphors were synthesized through high temperature solid state method. Under 980 nm laser excitation, the Lu2W2.5Mo0.5O12: Er3+/Yb3+ compounds show thermal enhancement of up-conversion luminescence (UCL), which is attributed to the lattice contraction and distortion from negative thermal expansion (NTE) of Lu2W2.5Mo0.5O12 host enhancing the energy transfer of Yb3+ to Er3+, eliminating the energy transfer of Er3+ to Er3+ through Er3+ single-doped Lu2W2.5Mo0.5O12 phosphors without thermal enhancement of UCL. The green luminescence intensities at 693 K of the Lu1.98-xW2.5Mo0.5O12: 0.02Er3+, xYb3+ (x = 0.2, 0.3, 0.4) samples are 4.6, 4.3 and 7.0 times as that of 302 K, respectively. And through fluorescence intensity ratio (FIR) technique, the corresponding maximum absolute sensitivities are 0.00741, 0.00744 and 0.00723, respectively. The green monochromaticity of UCL spectra in Er3+/Yb3+ co-doped samples increase with the increasing of temperature, and the possible UCL mechanism with temperature was discussed. The results indicate that the Lu2W2.5Mo0.5O12: Er3+/Yb3+ phosphors can be applied at a high temperature as optical thermometer with a good green monochromaticity.  相似文献   

14.
Herein, Cr3+ and Er3+ codoped zinc gallogermanate (ZGGO) nanoparticles with average size of ~60 nm was synthesized via a hydrothermal path. It was found that near infrared (NIR)-III (~1540 nm) afterglow was realized in ZGGO:Cr3+,Er3+ nanoparticles based on the successive energy transfer (ET) from Cr3+ to Er3+ after the stoppage of low-dose (60 mSv) X-ray irradiation. Meanwhile, the upconverted afterglow at 696 nm was produced via the ET from Er3+ to Cr3+ under different NIR light (808, 980, and 1532 nm) irradiations. Our results demonstrated that an X-ray pre-irradiation and a subsequent 980-nm light re-excitation might be a good strategy for realizing potential bioimaging. In particular, local-tissue NIR-I afterglow imaging using Cr3+ and Er3+ codoped ZGGO nanoparticles can be easily acquired by one-step 980-nm laser radiation. Furthermore, NIR-I/III afterglow mechanisms of ZGGO:Cr3+,Er3+ nanoparticles after stopping X-ray or different NIR lights (808, 980, and 1532 nm) irradiations were given.  相似文献   

15.
《Ceramics International》2016,42(11):13168-13175
Er3+/Yb3+ co-doped bioactive glasses were prepared via containerless processing in an aerodynamic levitation furnace. The as-prepared glasses were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) equipped with energy dispersive X-Ray spectroscopy (EDX). The up-conversion luminescence of as-prepared glasses was measured using an Omni- 3007 spectrometer. Furthermore, the in vitro bioactivity was evaluated by soaking the materials in simulated body fluid, and the biocompatibility was evaluated in MC3T3-E1 cell culture.The results show that containerless processing is a unique method to prepare homogeneous rare earth doped bioactive glasses. The obtained Er3+/Yb3+ co-doped glasses show green and red up-conversion luminescence at the excitation of 980 nm laser. The XRD analysis confirmed that calcium silicate powders, as starting materials, were completely transformed from the original multi-crystalline phase (CS-P) into the amorphous-glassy phase (CS-G, EYS, LCS) via containerless processing. The SEM observation combined with EDX and FTIR analyses showed that the as-prepared glasses were bioactive. The cell proliferation assay also revealed that the as-prepared glasses were biocompatible and nontoxic to MC3T3-E1 cells. This study suggests that the luminescent bioactive glasses prepared by containerless processing could be used for studying biodegradation of bone implantation materials.  相似文献   

16.
Upconversion luminescence of rare‐earth ions doped nanoparticles can be enhanced by the localized surface plasmon resonance (LSPR) of noble metals nanoparticles, which was extensively investigated. The semiconductor nanomaterials such as the WO2.72 exhibited the tunable LSPR, which provide the possibility for the luminescence enhancement of upconversion nanoparticles. In this work, the urchin‐like WO2.72 was successfully prepared by solvothermal method, exhibiting the LSPR in the near infrared region. The influence of LSPR of WO2.72 on the upconversion luminescence of NaYF4:Yb3+,Er3+ nanoparticles was investigated firstly. The 525, 542, and 660 nm upconversion luminescence of NaYF4: Yb3+,Er3+ nanoparticles was increased by the 10, 8, and 12 factors, respectively, which was from the enhanced excitation field induced by the WO2.72 film.  相似文献   

17.
《Ceramics International》2022,48(10):13960-13969
The digadolinium tellurite phosphors of Gd2Te4O11(GTO):Yb3+/Er3+ have been successfully synthesized as upconversion luminescence (UCL) materials via one-step hydrothermal method. The crystal structure, morphology, and upconversion luminescence property were systematically characterize by XRD, SEM, and spectroscopy techniques. The Rietveld refinements of crystal structure were carried out on the XRD patterns and the feature of crystal structure was analyzed. Under the 980 nm NIR excitation, these materials showed very bright upconverted emissions. The concentrations of Yb3+ and Er3+ were optimized and the strongest upconverted emissions were achieved in the GTO:15%Yb3+/1%Er3+. The possible energy transfer mechanism of UCL was proposed based upon the analysis of power-dependent UCL and fluorescence kinetics. Furthermore, the fluorescence intensity ratio (FIR) derive from the two thermally coupled energy levels (2H11/2 and 4S3/2) of Er3+ was employed as indicator for temperature measurement. The maximum absolute sensitivity can be achieved to be 7.34 × 10?3 K?1 at 501 K. This material exhibited good reliability and repeatability in optical temperature measurement, which could be a novel promising candidate for noncontact temperature sensors.  相似文献   

18.
《Ceramics International》2023,49(6):9574-9583
Here we adopt trivalent lanthanide (Ln3+ = Er3+, Er3+/Ho3+, and Yb3+/Tm3+) doped Sr2LaNbO6 (SLNO) as novel upconversion luminescence (UCL) materials for achieving UCL and optical temperature sensing under 980 nm excitation. Specifically, Er3+ single doped Sr2LaNbO6 phosphors present bright high-purity green emission under the 980 nm excitation. While co-doping with the Ho3+ ions, the component of red emission from Er3+ ions increases significantly and sample show a remarkable enhancement of luminescent intensity relative to SLNO:Er3+ sample. The above-mentioned phosphors and Yb3+/Tm3+ co-doped phosphor (blue emission) successfully achieve high-purity trichromatic UCL and mixed white light output in the same host. Furthermore, the temperature sensing performance of the SLNO:Er3+/Ho3+ phosphor based on the fluorescence intensity ratio (FIR) is systematically studied for the first time. The temperature sensing based on the non-thermal coupling levels (NTCLs) exhibit higher sensitivity than that based on the thermal coupling levels (TCLs). The maximum absolute and relative sensitivity for 4F9/2/4I9/2 NTCLs reach 0.16803 K?1 at 427 K and 0.01591 K?1 at 641 K, respectively. Interestingly, NIR emission of 4I9/2 → 4I15/2 transition presents a thermal enhancement, while visible emissions show thermal quenching. These results indicate that the Ln3+ doped Sr2LaNbO6 UCL phosphors have potential applications in the fields of non-contact temperature sensors, full-color displays, and anti-counterfeiting.  相似文献   

19.
《Ceramics International》2016,42(6):6899-6905
In the present article, optical properties and energy upconversion in Er3+/Yb3+ co-doped BiNbO4 matrix were investigated. The BiNbO4 matrix was prepared using the solid-state reaction method. X-ray diffraction of the matrix shows that the crystal structure is consistent with ICSD code 74338. The grain distribution and the behavior of doping with Er3+ and Yb3+ on the sample surface were obtained by scanning electron microscope. Raman spectral characterization was carried out to examine the behavior of the vibrational modes of the samples. Upconversion emissions in the visible region at 484.5, 522, 541.5 and 670.5 nm in the matrices BiNbO4:Er,Yb and BiNbO4:Er were observed and analyzed as a function of 980 nm laser excitation power and rare-earth doping concentration. The results show that BiNbO4 is a promising host material for efficient upconversion phosphors.  相似文献   

20.
The upconversion (UC) luminescence of Li+/Er3+/Yb3+ co-doped CaWO4 phosphors is investigated in detail. Single crystallized CaWO4:Li+/Er3+/Yb3+ phosphor can be obtained, co-doped up to 25.0/5.0/20.0 mol% (Li+/Er3+/Yb3+) by solid-state reaction. Under 980 nm excitation, CaWO4:Li+/Er3+/Yb3+ phosphor exhibited strong green UC emissions visible to the naked eye at 530 and 550 nm induced by the intra-4f transitions of Er3+ (2H11/2,4S3/24I15/2). The optimum doping concentrations of Yb3+/Li+ for the highest UC luminescence were verified to be 10/15 mol%, and a possible UC mechanism that depends on the pumping power is discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号