首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curcumin has been reported to have many biological activities, but its application as a functional ingredient is currently limited because of its poor water-solubility and bioaccessibility. This study investigated the impact of different lipid-based formulations on curcumin encapsulation and bioaccessibility. Oil-in-water nanoemulsions (r < 100 nm), or conventional emulsions (r > 100 nm), were prepared with different lipids: long, medium, and short chain triacylglycerols (LCT, MCT and SCT, respectively). An in vitro model simulating small intestine digestion conditions characterised rate and extent of lipid phase digestion. A centrifugation method determined fraction of curcumin released into mixed micelles after digestion (bioaccessibility). Initial digestion rate decreased in the order SCT > MCT > LCT, while final digestion extent decreased in the order MCT > SCT > LCT. The bioaccessibility of curcumin decreased in the order MCT > LCT ? SCT and appeared to be slightly higher in conventional emulsions than in nanoemulsions.  相似文献   

2.
The study was conducted to produce ergocalciferol (Vit-D2) loaded oil-in-water (O/W) emulsions utilising the onion skin waste saponins (OSW) as a natural emulsifier and almond oil as carrier oil. The impact of different formulations upon the digestibility of lipids, LCT (long-chain triglycerides) or MCT (medium-chain triglycerides), and bioaccessibility of Vit-D2 was analysed. The mean particle size diameter of almond oil-based O/W emulsions was decreased with increasing homogenisation pressure and emulsifier concentration. During 120 mins of digestion in small intestinal fluids (SIF), almond oil in high-lipid emulsions (5% w/w) was not fully digested, resulting in a lower bioaccessibility of ergocalciferol than low-lipid samples. Almond oil emulsions with larger particle size have a slower rate of lipid digestion than the smaller size particles, but the release rate of free fatty acids was constant throughout the digestion process. Moreover, almond oil emulsions showed similar Vit-D2 bioaccessibility to the oil-based emulsions but were much higher than MCTs.  相似文献   

3.
The objective of this study was to examine the impact of oil, emulsifier, and texture modifier addition on the bioaccessibility of lycopene in homogenized tomato pulp. Different types (olive or corn oil) and levels (0 to 8 wt%) of digestible lipids, a protein-based emulsifier (whey protein isolate, WPI) and/or a polysaccharide-based texture modifier (sodium alginate, SA) were added to the tomato pulp. The addition of these substances increased the amount of lycopene liberated from the tomato tissues. WPI addition led to the formation of smaller oil droplets during homogenization that scattered light more strongly, thereby leading to a tomato pulp that appeared more turbid. SA addition increased the viscosity of the tomato pulp, thereby increasing its uniformity. The best storage stability of lycopene in the tomato pulp was achieved by adding 8% corn oil and 1% WPI. However, the best in vitro bioaccessibility of lycopene (61.5%) was achieved using 6% olive oil and 1% SA. Overall, our results show that lycopene bioaccessibility in tomato products can be increased by careful manipulation of emulsion properties.Industrial relevance: Lycopene is a strongly hydrophobic carotenoid found in tomatoes that contributes to their desirable appearance and potential health benefits. However, it has poor chemical stability and low oral bioavailability, which limits its beneficial effects. We show that the stability and bioaccessibility of lycopene can be improved by high-pressure homogenization of tomato pulp in the presence of specific food additives. This approach may be suitable for the large-scale production of tomato products with enhanced health benefits.  相似文献   

4.
Qian C  Decker EA  Xiao H  McClements DJ 《Food chemistry》2012,135(3):1440-1447
Consumption of carotenoids may reduce the incidences of certain chronic diseases, but their use in foods is currently limited because of their poor water-solubility, low bioavailability and chemical instability. We examined the impact of carrier oil type on the bioaccessibility of β-carotene encapsulated within nanoemulsion-based delivery systems. Oil-in-water nanoemulsions (< 200 nm) were formed using a non-ionic surfactant (Tween 20) as emulsifier and long chain triglycerides (LCT), medium chain triglycerides (MCT) or orange oil as carrier oils. The influence of carrier oil type on β-carotene bioaccessibility was established using an in vitro model to simulate the oral, gastric and small intestinal phases of the gastrointestinal tract. The rate and extent of free fatty acid production in the intestine decreased in the order LCT ≈ MCT ? orange oil; whereas β-carotene bioaccessibility decreased in the order LCT ? MCT > orange oil. The bioaccessibility of β-carotene was negligible (≈0%) in orange oil nanoemulsions because no mixed micelles were formed to solubilise β-carotene, and was relatively low (≈2%) in MCT nanoemulsions because the mixed micelles formed were too small to solubilise β-carotene. In contrast, β-carotene bioaccessibility was relatively high (≈66%) in LCT nanoemulsions. Our results have important implications for the design of effective delivery systems for encapsulation of carotenoids and other lipophilic bioactive components.  相似文献   

5.
The ability of excipient nanoemulsions to increase the bioaccessibility of different kinds of nutraceuticals (phenolics and carotenoids) in mangoes was studied. Oil‐in‐water excipient nanoemulsions containing small digestible lipid nanoparticles (d < 200 nm) were prepared using different oil phases: medium chain triglycerides (MCT) and long‐chain triglycerides (LCT). These nanoemulsions were then mixed with pureed mango and passed through a simulated gastrointestinal tract (GIT): mouth, stomach, and small intestine. Carotenoid bioaccessibility decreased in the following order: LCT nanoemulsions > MCT nanoemulsions > buffer solution, which was attributed to differences in the solubilization capacity of the mixed micelles generated in the intestinal fluids. The digestion products of LCT formed mixed micelles with hydrophobic domains large enough to accommodate the carotenoids, whereas those of MCT did not. Excipient emulsions had much less effect on phenolic bioaccessibility, which may be because phenolics are smaller more polar molecules and are therefore more easily solubilized in aqueous intestinal fluids. These results highlight the potential of excipient nanoemulsions in boosting the bioavailability of lipophilic bioactive agents in fruits and vegetables.  相似文献   

6.
The interest in incorporating carotenoids, such as β-carotene, into foods and beverages is growing due to their potential health benefits. However, the poor water-solubility and low bioavailability of carotenoids is currently a challenge to their incorporation into many foods. The aim of this work was to study the influence of particle size on lipid digestion and β-carotene bioaccessibility using corn oil-in-water emulsions with different initial droplet diameters: large (d43 ≈ 23 μm); medium (d43 ≈ 0.4 μm); and small (d43 ≈ 0.2 μm). There was a progressive increase in the mean particle size of all the emulsions as they passed through a simulated gastrointestinal tract (GIT) consisting of mouth, stomach, and small intestine phases, which was attributed to droplet coalescence, flocculation, and digestion. The electrical charge on all the lipid particles became highly negative after passage through the GIT due to accumulation of anionic bile salts, phospholipids, and free fatty acids at their surfaces. The rate and extent of lipid digestion increased with decreasing mean droplet diameter (small ≈ medium ? large), which was attributed to the increase in lipid surface area exposed to pancreatic lipase with decreasing droplet size. There was also an appreciable increase in β-carotene bioaccessibility with decreasing droplet diameter (small > medium > large). These results provide useful information for designing emulsion-based delivery systems for carotenoids for food and pharmaceutical uses.  相似文献   

7.
This study elucidates the impact of the type and quantity of lipids, added upon digestion of raw tomato pulp, on the bioaccessibility of lycopene. Lycopene bioaccessibility was studied by measuring the micellarization during in vitro digestion. Coconut oil, palm oil, cocoa butter, olive oil, sunflower oil and fish oil were selected because of their distinctly different fatty acid composition. Upon adding 5% of lipid to raw tomato pulp, all tested lipids significantly improved the lycopene bioaccessibility. The largest increase in lycopene bioaccessibility was noticed after supplying 5% of sunflower oil, followed by olive oil and cocoa butter (not all differences were significant). A slightly smaller increase was observed when fish oil, coconut oil and palm oil were used. In addition, the effect of different quantities (0–10%) of coconut oil, olive oil and fish oil was examined. Over the entire concentration range, increasing the amount of coconut oil increased the lycopene bioaccessibility, while the highest bioaccessibility was found using 1 and 2% of respectively fish oil and olive oil. Moreover, depending on the amount of added lipid, the type of lipid resulting in the highest lycopene bioaccessibility differed. The results obtained clearly indicate that lycopene bioaccessibility depends both on the type and on the quantity of the lipid present during in vitro digestion of raw tomato pulp.  相似文献   

8.
The effect of cooling rate on the destabilization of oil-in-water (o/w) emulsions was studied as a function of oil content (20% and 40% o/w), homogenization conditions, and crystallization temperatures (10, 5, 0, ?5 and ?10 °C). The lipid phase was a mixture of anhydrous milk fat and soybean oil, and whey protein was used as the emulsifier. Differential scanning calorimetry was used to analyze the crystallization and melting behaviors; while a vertical scan macroscopic analyzer measured the physicochemical stability. Slow cooling rate increased the stability of emulsions with 20% oil. In addition, slow cooling promoted the onset of crystallization and delayed crystal growth. These effects were more significant in emulsions formulated with 20% oil and formulated under processing conditions that resulted in bigger droplet sizes (~0.9 μm).  相似文献   

9.
Feasibility of producing, at pilot scale (5 kg), stable oil in water emulsions with size of 1–2 μm and 100–200 nm was investigated in relation with the oil content of the emulsion (4%, 8% and 12% w/w) and with the composition of the aqueous phase.  相似文献   

10.
Abstract: The correlation between food microstructure and in vitro bioaccessibility of carotenes was evaluated for tomato and carrot emulsions (5% olive oil) subjected to high pressure homogenization (HPH) at varying degrees of intensity. The aim was to investigate whether additional mechanical disruption of the food matrix could be utilized to further increase the carotene bioaccessibility of an already pre‐processed material. The carotene bioaccessibility of the samples was measured after simulated in vitro digestion, carotene release to the oil phase was estimated by Confocal Raman spectroscopy and, to measure active uptake of carotenes, Caco‐2 cells were incubated with the digesta of selected samples. HPH did not notably affect the retention of carotenes or ascorbic acid but significantly increased both the release and micellar incorporation of α‐ and β‐carotene in carrot emulsions 1.5‐ to 1.6‐fold. On the other hand, in vitro bioaccessibility of lycopene from tomato was not increased by HPH under any of the conditions investigated. Instead, the results suggested that lycopene bioaccessibility was limited by a combination of the low solubility of lycopene in dietary lipids and entrapment in the cellular network. Carotene uptake by Caco‐2 cells appeared to be mainly dependent upon the carotene concentration of the digesta, but cistrans isomerization had a significant impact on the micellarization efficiency of carotenes. We therefore conclude that HPH is an interesting option for increasing the bioaccessibility of carotenes from fruits and vegetables while maintaining a high nutrient content, but that the results will depend on both food source and type of carotene. Practical Application: A better understanding of the correlation between the processing of fruits and vegetables, microstructure and nutrient bioaccessibility can be directly applied in the production of food products with an increased nutritional value.  相似文献   

11.
The rheological behavior of corn oil emulsions prepared by high pressure homogenization (HPH) was investigated. Coarse emulsions of corn oil (10-30 g oil/100 g emulsion) in casein dispersions containing 0.5-3.5 g micellar casein/100 g casein dispersion in an oil-free basis were homogenized at 0-300 MPa. Flow behavior under continuous increasing (0-150 s−1) or decreasing (150-0 s−1) shear rate was tested. Emulsions that showed macroscopic change in consistency were tested for viscoelasticity (G′). Homogenization of emulsions with low oil concentration (10 g/100 g) resulted in Newtonian behavior for all treatment pressures. The rheological behavior of emulsions with higher oil concentration (30 g/100 g) was dependent on casein concentration in the aqueous phase and varied from Newtonian to shear thinning. Homogenization pressures between 20 and 100 MPa induced the formation of a gel-like structure possibly through pressure-induced interactions between caseins surrounding adjacent droplets.  相似文献   

12.
Soluble fibers, like pectin, are known to influence the physicochemical processes during the digestion of dietary fat and may therefore affect the absorption of lipophilic micronutrients such as carotenoids. The objective of the current work was to investigate whether the pectin concentration and degree of methyl-esterification (DM) influence the bioaccessibility of carotenoids loaded in the oil phase of oil-in-water emulsions. The in vitro β-carotene bioaccessibility was determined for different oil-in-water emulsions in which 1 or 2% citrus pectin with a DM of 99%, 66% and 14% was present. Results show that pectin concentration and DM influence the initial emulsion properties. The most stable emulsions with the smallest oil droplets (D(v,0.9) of 15–16 μm) were obtained when medium or high methyl-esterified pectin was present in a 2% concentration while gel-like pectin structures (D(v,0.9) of 114 μm), entrapping oil droplets, were observed in the case where low methyl-esterified pectin was present in the aqueous emulsion phase. During in vitro stomach digestion, these gel-like structures, entrapping β-carotene loaded oil droplets, significantly enlarged (D(v,0.9) of 738 μm), whereas the emulsion structure could be preserved when the medium or high methyl-esterified pectin was present. Initial emulsion viscosity differences, due to pectin concentration and especially due to pectin DM, largely disappeared during in vitro digestion, but were still significant after the stomach digestion phase. The observed differences in emulsion structure before and during in vitro digestion only resulted in a significant difference between emulsions containing low methyl-esterified pectin (β-carotene bioaccessibility of 33–37%) and medium/high methyl-esterified pectin (β-carotene bioaccessibility of 56–62%).  相似文献   

13.
利用体外模拟胃肠道(Gastrointestinal tract,GIT)消化模型,研究了粒径大小和油脂链长对赋形剂乳液/橘子混合体系在胃肠道消化过程中物化特性、微观形态的变化和对橘子中β-胡萝卜素生物可给性的影响。结果表明:相比于中等粒径(500 nm)乳液和大粒径(10 μm)乳液,小粒径(200 nm)乳液的物理特性(粒径和电位)和微观形态在各个模拟消化阶段中的变化趋势最明显;除小肠消化阶段之外,中链油脂(以MCT油为代表)制备的赋形剂乳液的物理特性与长链油脂(以玉米油为代表)制备的赋形剂乳液没有显著性差异(p>0.05);小粒径乳液的油脂消化速率最快,其生物可给性提升(38.13%)的效果显著大于中粒径(24.93%)和大粒径(26.23%)乳液(p<0.05);长链油脂与中链油脂的油脂消化速率的差异不显著(p>0.05);与中链油脂相比,长链油脂制备的赋形剂乳液对提高橘子中β-胡萝卜素的生物可给性具有更显著的影响(p<0.05)。研究结果对于科学设计赋形剂乳液来提高果蔬中亲脂性生物活性物质的生物可给性具有重要指导作用。  相似文献   

14.
Emulsion filled alginate microgel particles can be applied as carrier systems for lipophilic actives in pharmaceutical and food formulations. In this study, the effects of oil concentration, emulsifier type and oil droplet size on the physical stability of emulsions encapsulated in calcium alginate microgel particles (20–80 μm) produced by a continuous impinging aerosol technique were studied. Oil emulsions emulsified by using either sodium caseinate (SCN) or Tween 80 were encapsulated at different oil concentrations (32.55, 66.66 and 76.68% w/w of total solids content). The emulsions were analysed before and after encapsulation for changes in emulsion size distribution during storage, and compared to unencapsulated emulsions. The size distribution of encapsulated fine emulsion (mean size ~ 0.20 μm) shifted to a larger size distribution range during encapsulation possibly due to the contraction effect of the microgel particles. Coarse emulsion droplets (mean size ~ 18 μm) underwent a size reduction during encapsulation due to the shearing effect of the atomizing nozzle. However, no further size changes in the encapsulated emulsion were detected over four weeks. The type of emulsifier used and emulsion concentration did not significantly affect the emulsion stability. The results suggest that the rigid gel matrix is an effective method for stabilising lipid emulsions and can be used as a carrier for functional ingredients.  相似文献   

15.
The aim of this study was to compare the efficiency of three different food‐grade emulsifiers to form and stabilise an orange oil‐in‐water emulsion. The emulsifier type and concentration had a profound effect on the initial particle size of the oil droplets with Tween 80 being the most effective in reducing the particle size (1% w/w, 1.88 ± 0.01 μm) followed by sodium caseinate (10% w/w, 2.14 ± 0.03 μm) and gum arabic (10% w/w, 4.10 ± 0.24 μm). The long‐term stability of the concentrated beverages was monitored using Turbiscan analysis. The Turbiscan stability indices after 4 weeks of storage followed the order: Tween 80 (1.70 ± 0.08) < gum arabic (4.83 ± 0.53) < sodium caseinate (6.20 ± 1.56). The protein emulsifier was more capable to control the oxidation process, and this was attributed to the excess amount of emulsifier present in the aqueous phase. This study provides useful insights into the formulation of flavour emulsions by the beverage industry.  相似文献   

16.
A total of 37 varieties of fresh fruits obtained from six representative markets in Bangkok, Thailand, were determined for their beta-carotene, lycopene, and alpha-tocopherol contents using high performance liquid chromatography. Beta-carotene content ranged from undetectable up to 616 μg/100 g of edible portion, lycopene content from undetectable up to 6693 μg/100 g and vitamin E content from not undetectable up to 1.43 mg/100 g. Red watermelon, Citruluss vulgalis (“jin-trarah” variety) was the richest source of dietary beta-carotene (1040 μg/serving) and lycopene (11,378 μg/serving), whilst the highest alpha-tocopherol content was found in unripe mango, Mangifera indica (“keosawoei” variety) with approximately 0.90 mg/75 g of edible portion, providing 9% of the Thai recommended daily intake of vitamin E.  相似文献   

17.
The influence of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility was investigated. To this purpose, samples were subjected to ultrasound at a frequency and amplitude of 24 kHz and 100 μm, respectively, for increasing lengths of time. Results showed that ultrasound was responsible for loss of tomato cell integrity, as well as a decrease in the degree of pectin esterification. In contrast, rheological measurements showed that ultrasonically treated tomato pulp had greater gel-like properties than an untreated sample. It was inferred that ultrasound promoted the formation of a new network due to hydrogen bonding and hydrophobic interactions among the de-esterified pectin molecules. Such a reinforcement of the tomato pulp structure resulted in a decrease in lycopene in vitro bioaccessibility of the ultrasonically treated tomato pulp, probably due to the fact that the presence of a stronger network may make lycopene less available to the digestion process.  相似文献   

18.
The effects of sensitisers and pH on the oil oxidation of acidic O/W emulsions were studied under light by measuring hydroperoxide content and headspace oxygen consumption in the emulsions. The emulsions consisted of canola and tuna oil (2:1 w/w, 32%), diluted acetic acid (64%), egg yolk powder (4%), chlorophyll b or erythrosine (5 μM), and/or diazabicyclooctane (DABCO) or sodium azide (0.5 M). The emulsion pH values were 2.67, 3.68, and 6.27. Chlorophyll increased oil oxidation in the emulsion under light via singlet oxygen production while erythrosine did not. DABCO significantly decreased photooxidation of the oil containing chlorophyll, suggesting singlet oxygen involvement. However, sodium azide increased photooxidation of the oil containing chlorophyll possibly via azide radical production under acidic conditions. The oil photooxidation was higher in the emulsion containing chlorophyll at pH 6.27 than at pH 2.67 or 3.68, primarily by singlet oxygen and secondarily by free radicals produced from hydroperoxide decomposition.  相似文献   

19.
Carotenoid solubilization in the oil phase is a prerequisite for carotenoid bioaccessibility during digestion. However, the level of bioencapsulation and the hydrophobicity of carotenoids were proven to strongly affect their transfer to oil during in vitro digestion. Therefore, thermal processing (95–110 °C) was exploited to favor carotenoid transfer from tomato- and carrot-based fractions to the oil before digestion. Initially, the total (all-trans + cis) carotenoid content in the oil increased quickly, thereafter, depending on the temperature applied, either a drop or a plateau was reached at longer treatment times. Treatment conditions of > 100 °C for 10 min significantly favoured carotenoid transfer to oil (≥ 75%). The rates of transfer to oil were as follows: β-carotene  α-carotene > lycopene. The results revealed that the cell wall hinders carotenoid transfer to oil during thermal processing. Overall, the results indicate that typical high temperature short time thermal processing can be sufficient to achieve maximal carotenoid transfer to oil with minimal degradation in real food systems/food emulsions and this can be crucial to improve the nutritional quality of carrot and tomato based products.  相似文献   

20.
Tuna oil-in-water emulsions (5 wt% tuna oil, 100 mM acetate buffer, pH 3.0) containing droplets stabilized either by lecithin membranes (primary emulsions) or by lecithin–chitosan membranes (secondary emulsions) were produced. The secondary emulsions were prepared using a layer-by-layer electrostatic deposition method that involved adsorbing cationic chitosan onto the surface of anionic lecithin-stabilized droplets. Primary and secondary emulsions were prepared in the absence and presence of corn syrup solids (a carbohydrate widely used in the micro-encapsulation of oils) and then their stability to environmental stresses was monitored. The secondary emulsions had better stability to droplet aggregation than primary emulsions exposed to thermal processing (30–90 °C for 30 min), freeze-thaw cycling (−18 °C for 22 h/30 °C for 2 h), high sodium chloride contents (200 mM NaCl) and freeze-drying. The addition of corn syrup solids decreased the stability of primary emulsions, but increased the stability of secondary emulsions. The interfacial engineering technology used in this study could lead to the creation of food emulsions with novel properties or improved stability to environmental stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号