首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fully dense SiC bulks with Al2O3 and Al2O3 + Y2O3 sintering additives were prepared by spark plasma sintering and the effect of sintering additives on the hydrothermal corrosion behavior of SiC bulks was investigated in the static autoclave at 400°C/10.3 MPa. The SiC specimen with Al2O3 sintering additive exhibited a higher weight loss and followed a linear law. However, the SiC specimen with Al2O3 + Y2O3 additive exhibited a lower weight loss and followed a parabolic law, indicating that the corrosion kinetic and mechanism were different for these two SiC bulks. Further examination revealed that, a deposited layer was formed on the surface of SiC specimen with Al2O3 + Y2O3 sintering additive after corrosion, which can effectively protect the SiC specimen from further corrosion, and thereby improved the corrosion resistance of the SiC specimen with Al2O3 + Y2O3 sintering additive.  相似文献   

2.
Semiconductor particles doped Al2O3 coatings were prepared by cathode plasma electrolytic deposition in Al(NO3)3 electrolyte dispersed with SiC micro- and nano-particles (average particle sizes of 0.5–1.7?µm and 40?nm respectively). The effects of the concentrations and particle sizes of the SiC on the microstructures and tribological performances of the composite coatings were studied. In comparison with the case of dispersing with SiC microparticles, the dispersion of SiC nanoparticles in the coatings was more uniform. When the concentration of SiC nanoparticles was 5?g/L, the surface roughness of the composite coating was reduced by 63%, compared with that of the unmodified coating. Friction results demonstrated that the addition of 5?g/L SiC nanoparticles reduced the friction coefficient from 0.60 to 0.38 and decreased the wear volume under dry friction. The current density and bath voltage were measured to analyze the effects of SiC particles on the deposition process. The results showed that the SiC particles could alter the electrical behavior of the coatings during the deposition process, weaken the bombardment of the plasma, and improve the structures of the coatings.  相似文献   

3.
《Ceramics International》2022,48(2):1574-1588
In this study, individual Al2O3 and Cr2O3 coatings and Cr2O3-25, 50, 75 wt% Al2O3 composite coatings were applied on carbon steel by atmospheric plasma spraying method. Corrosion experiments were performed on as-sprayed and epoxy resin sealed coatings including potentiodynamic polarization, electrochemical impedance spectroscopy and long-term immersion in 3.5 wt% NaCl solution. Phase composition and microstructure of the coatings were investigated by x-ray diffraction, optical microscopy and scanning electron microscopy, before and after the corrosion experiment. The results showed that the Cr2O3 coating exhibited the best corrosion resistance, due to the densest microstructure and highest adhesion strength. The Cr2O3-25 wt% Al2O3 coating had the highest interconnected porosities and thus had the least corrosion resistance compared to other coatings. In general, the as-sprayed coatings induced a maximum increase of 3.93 times the polarization resistance (Rp) in the polarization experiment and a 3.5 times increase in the charge transfer resistance (Rct) in the EIS experiment, which was not significant. Stresses caused by increased volume of corrosion products in the coating-substrate interface resulted in the spallation of Cr2O3-25, 50 wt% Al2O3 coatings from the substrate over long-term of immersion. The adhesion strength of the coatings was a determining criterion for the long-term durability of the coatings. The sealing treatment resulted in a significant increase in Rp and Rct.  相似文献   

4.
The poor wet-oxidation resistance limits the long-life service of SiCf/SiC composites as the hot end components of aero-engines. The stability of SiCf/SiC composites under high-temperature wet oxygen environment can be promoted by more robust SiC matrix. In this work, the effect of Y2O3 on the corrosion behaviors of SiC ceramics in flowing O2/H2O atmosphere at 1400 ℃ was studied. Duo to the continuous Y2Si2O7 layer formed on the surface, SiC-Y2O3 ceramics exhibit much better wet-oxidation resistance than original SiC ceramics. During the oxidation process, Y2O3 dispersed in the ceramics migrates to the surface and reacts with SiO2 to form β-Y2Si2O7. Subsequently, the β-Y2Si2O7 aggregates and grows to form a continuous Y2Si2O7 layer, inhibiting the corrosion from oxidizing medium to the inner SiC matrix. This study is expected to provide important ideas for the design and structure regulation of wet-oxidation resistant SiCf/SiC composites.  相似文献   

5.
6.
《Ceramics International》2017,43(9):7080-7087
Al2O3-SiC-SiO2-C composite refractories are interesting potential blast furnace hearth lining materials that feature several advantageous properties. In this study, the corrosion resistance of a novel Al2O3-SiC-SiO2-C composite refractory to blast furnace slag was investigated by adopting a rotating immersion method (25 r/min) at 1450–1550 °C and comparing it against a conventional corundum-based refractory at 1550 °C as a benchmark. The results showed that the apparent activation energy of Al2O3-SiC-SiO2-C composite refractory over the dissolution process in the slag is 150.4 kJ/mol. Dissolution of the Al2O3 and 3Al2O3·2SiO2 phases appeared to be the main cause of Al2O3-SiC-SiO2-C composite refractory corrosion. High-melting-point compounds in the slag layer formed a protective layer which mitigated the corrosion. The novel Al2O3-SiC-SiO2-C composite refractory is better suited to blast furnace hearth lining than the conventional corundum-based refractory, because the carbon phase and SiC phase in the material are not readily wetted by the blast furnace slag and therefore are more resistant to slag penetration. Higher melting point phases also may crystallize on the hot face of the hearth lining due to the high thermal conductivity of the Al2O3-SiC-SiO2-C composite refractory, promoting a more stable protective layer.  相似文献   

7.
《Ceramics International》2017,43(15):12126-12137
Mechanical resistance of Al2O3 + TiO2 nanocomposite ceramic coating deposited by electrostatic spray deposition method onto X10CrAlSi18 steel to thermal and slurry tests was investigated. The coating was produced from colloidal suspension of TiO2 nanoparticles dispersed in 3 wt% solution of Al2(NO3)3, as Al2O3 precursor, in ethanol. TiO2 nanoparticles of two sizes, 15 nm and 32 nm, were used in the experiments. After deposition, coatings were annealed at various temperatures, 300, 1000 and 1200 °C, and next exposed to cyclic thermal and slurry tests. Regardless of annealing temperature and the size of TiO2 nanoparticles, the outer layer of all coatings was porous. The first five thermal cycles caused a rapid increase of aluminum content of the surface layer to 30–37 wt%, but further increase in the number of thermal cycles did not affect the aluminum content. The oxidation rate of coating-substrate system was lower during the thermal tests than during annealing. The oxidation rate was also lower for smaller TiO2 particles (15 nm) forming the coating than for the larger ones (32 nm). The protective properties of Al2O3 + TiO2 coating against intense oxidation of substrate were lost at 1200 °C. Slurry tests showed that coatings annealed at 1000 °C had the best slurry resistance, but thermal tests had weakened this slurry resistance, mainly due to decreasing adhesion of the coating.  相似文献   

8.
In this study, Al2O3/CrAlSiN multilayer coatings with various periods were prepared using a hybrid process involving overlapping magnetron sputtering of CrAlSiN and atomic layer deposition (ALD) of Al2O3. The influence of the number of Al2O3 layers on the mechanical properties, corrosion behavior and oxidation characteristics of the coatings was studied using nano/micro indentation, electrochemical corrosion, and high temperature static oxidation tests. The results show that the multilayer structure can effectively prevent crack propagation during the coating and subsequently increase the coating toughness. A substantial improvement in the resistance to electrochemical and oxidation corrosion was observed in the Al2O3/CrAlSiN multilayer coatings and increasing the number of Al2O3 layers dramatically increases the corrosion durability. The Al2O3 ALD layers are expected to inhibit the diffusion of corrosive substances such as ions and oxygen and the increase of the Al2O3 layer number decreases the diffusion fluxes of the coating elements to the surface and limit the oxide growth, resulting in the evolution of the oxidation produces from irregular particles to nano-walls/fibers. It is supposed that the PVD/ALD hybrid process may open a new hard coating design concept by providing a superior toughness and corrosion/oxidation resistance.  相似文献   

9.
《Ceramics International》2020,46(17):26945-26955
In this study, α-Al2O3 nanoparticles were prepared using a simple sol-gel method. Synthesized nanoparticles with NiCrAlY alloy were used as coating layer for high temperature corrosion control of boiler tubes in absence and presence of fuel ash. Thermal plasma technique was used for coating process. Corrosion rates of austenitic stainless steel tubes were evaluated via weight loss technique as a function of temperature. Prepared α-Al2O3 nanoparticles and surface morphology of austenitic stainless steel tubes were characterized by XRD, SEM and EDS analyses. The results show that the corrosion rate increases with increasing temperatures, in absence and presence of coating. Maximum coating efficiency was 82 and 88% in absence and presence of fuel ash respectively.  相似文献   

10.
《Ceramics International》2023,49(7):10354-10359
One of the critical issues in the application of supercritical water oxidation technology is to improve the corrosion resistance of reactor materials. Use of Al2O3 coating is one of the most promising methods to address this issue. In this study, thick NiAl/Al2O3 coatings on Inconel 625 substrates were prepared by a consecutive pack embedding and in-situ thermal oxidation process. The effect of aluminizing and oxidation temperature on phase structure and coating thickness is studied. Results show the diffusion of Al from the exterior to the interior of the alloy matrix to form intermetallic compounds between Al and metal elements in the matrix (Ni, Cr, Mo, etc.). Moreover, the coating thickness can reach above 300 μm at the aluminizing temperature of 950 °C. Increasing the aluminizing temperature above 950 °C will not increase the coating thickness further. After high temperature oxidation subsequently, only phases of NiAl and Al2O3 were detected. The formation of Al2O3 layer can be ascribed to the surface oxidization of Al. And the NiAl between the alloy substrate and Al2O3 coating provides an interfacial layer that can alleviate the crack or exfoliation of ceramic coating due to the mismatching of thermal expand coefficient. The thick NiAl/Al2O3 coatings prepared by aluminizing 950 °C and oxidizing at 1100 °C exhibit satisfied corrosion resistance after supercritical water test. This work would provide a significant method to develop advanced ceramics coating for the corrosion resistance of alloys.  相似文献   

11.
The sol-dip-coating method and surface laser remelting technology are applied to form an Al2O3 layer on a YSZ coating surface to effectively block the environmental sediment CMAS. The behaviour and mechanism for CMAS corrosion of the coating are investigated, and the interfacial reliability of the coating and matrix is calculated by using the Monte Carlo method. The bonding force between the Al2O3 sol and YSZ coating can be effectively improved by laser surface treatment. Samples subjected to a laser pretreatment and posttreatment (YL-AL) of the YSZ coating are found to show the best interfacial bonding strength between Al2O3 and YSZ. Furthermore, the YL-AL sample shows a higher CMAS resistance than the laser posttreatment (Y-AL) samples, which effectively combines the chemical resistance of Al2O3 to CMAS and the physical resistance of the laser re-melted densification layer against CMAS penetration.  相似文献   

12.
A bi-layer environmental barrier coating (EBC) consisting of silicon(Si) bond coat/mixed ytterbium disilicate (Yb2Si2O7) and ytterbium monosilicate (Yb2SiO5) topcoats has been successfully prepared to completely wrap up the SiCf/SiC composites and the protective effects of such EBC have been evaluated by soaking them in a mixed 50% O2 and 50% H2O corrosive gases at 1300 °C for various times. In topcoats, Yb2Si2O7 is the major phase, providing good thermal expansion coefficient (CTE) matching with composite substrate and thus excellent thermal shock resistance, whereas Yb2SiO5 is the dispersing minor phase, providing improved water vapor corrosion resistance. The completely wrapping up of SiCf/SiC composites by above EBC system is employed to avoid direct exposure to the corrosive conditions, making it possible to evaluate the genuine protection effects of current EBCs. Under 1300 °C water vapor corrosion, the mass change, the phase composition and the evolution of microstructure are investigated, which suggest that the bi-layer EBC has excellent performance on protecting SiCf/SiC composites from water vapor corrosion at 1300 °C.  相似文献   

13.
This paper describes a preliminary investigation of a nanocomposite ceramic coating system, based on Al2O3/SiC. Feedstock Al2O3/SiC nanocomposite powder has been manufactured using sol-gel and conventional freeze-drying processing techniques and then low pressure plasma sprayed onto stainless steel substrates using a CoNiCrAlY bond coat. Coatings of a commercial Al2O3 powder have also been manufactured as a reference for phase transformations and microstructure. The different powder morphology and size distribution resulting from the different processing techniques and their effect on coating microstructure has been investigated. Phase analysis of the feedstock powders and of the as-sprayed coatings by X-ray diffractometry (XRD) and nuclear magnetic resonance (NMR) showed that the nano-scale SiC particles were retained in the composite coatings and that equilibrium α-Al2O3 transformed to metastable γ- and δ-Al2O3 phases during plasma spraying. Other minority phases in the sol-gel Al2O3/SiC nanocomposite powder such as silica and aluminosilicate were removed by the plasma-spraying process. Microstructure characterisation by scanning electron microscopy (SEM) of the as-sprayed surface, polished cross-section, and fracture surface of the coatings showed evidence of partially molten and unmolten particles incorporated into the predominantly lamella microstructure of the coating. The extent of feedstock particle melting and consequently the character of the coating microstructure were different in each coating because of the effects of particle morphology and particle size distribution on particle melting in the plasma.  相似文献   

14.
To improve the oxidation resistance of SiC composites at high temperature, the feasibility of using Ti3SiC2 coated via electrophoretic deposition (EPD) as a SiC fiber reinforced SiC composite interphase material was studied. Through fiber pullout, Ti3SiC2, due to its lamellar structure, has the possibility of improving the fracture toughness of SiCf/SiC composites. In this study, Ti3SiC2 coating was produced by EPD on SiC fiber; using Ti3SiC2‐coated SiC fabric, SiCf/SiC composite was fabricated by hot pressing. Platelet Ti3SiC2 powder pulverized into nanoparticles through high‐energy wet ball milling was uniformly coated on the SiC fiber in a direction in which the basal plane of the particles was parallel to the fiber. In a 3‐point bending test of the SiCf/SiC composite using Ti3SiC2‐coated SiC fabric, the SiCf/SiC composite exhibited brittle fracture behavior, but an abrupt slope change in the strength‐displacement curve was observed during loading due to the Ti3SiC2 interphase. On the fracture surface, delamination between each layer of SiC fabric was observed.  相似文献   

15.
《Ceramics International》2021,47(22):31433-31441
Zirconia-coated Cr2O3 aggregates synthesized by mixing ZrO2 powders and Cr2O3 aggregates with a phenolic resin binder followed by thermosetting treatment were employed as modified Cr2O3 aggregates to obtain Cr2O3–Al2O3–ZrO2 bricks (high-chromia bricks). The elastic modulus (E) and cold modulus of rupture (CMOR) of these high-chromia bricks before and after thermal shock cycles were systematically investigated, and the residual ratios of CMOR and E were calculated. The thermal shock resistance of the high-chromia bricks was significantly improved by the factor of modification of Cr2O3 aggregates. The mechanism of the improved thermal shock resistance of these high-chromia bricks was studied via microstructure analysis, and the crack propagation behavior was analyzed by scanning electron microscopy (SEM). The fracture work (γWOF), thermal shock damage factor (R′′′′), and thermal stress crack stability parameter (Rst) were measured and calculated using the wedge splitting test (WST). The results indicate that the porous ZrO2 coating layer wrapped the Cr2O3 aggregates, forming modified Cr2O3 aggregates that can increase crack deflection, free path of crack propagation, and fracture work, thus improving the thermal shock resistance of high-chromia bricks. The thermal shock resistance of the fabricated high-chromia bricks was highly correlated with the thickness of the ZrO2 coating layer surrounding the Cr2O3 aggregates. The variation trend of Rst is well consistent with the experimental results, which is suitable to evaluate the thermal shock resistance of high-chromia bricks.  相似文献   

16.
Corrosion behaviors and corroded microstructures of MgAl2O4-CaAl4O7-CaAl12O19 composites containing various additives (ZrO2 and TiO2) against steel ladle slag (containing CaF2) were investigated using a reaction test method at 1600 °C. Thermodynamic calculation, based on the Al2O3–CaO–MgO phase equilibrium diagram was used to further reveal the corrosion mechanism. The attack of the liquid slag on the composite substrate was found to take place through an interdiffusion mechanism, producing the precipitation of spinel in the slag and a continuous layer of calcium dialuminate at the interface. This composite showed a high total corrosion depth due to the high porosity of the substrate and the high fluidity of the slag. Fortunately, the addition of ZrO2 and TiO2 can greatly improve the slag corrosion resistance by increasing the viscosity of the slag at an earlier stage. Besides, the highly dense microstructures also improved the corrosion resistance against the liquid slag, and thus suppressed the slag penetration. It was also found that the CA6 grains with low aspect ratios are more difficult to be wetted and dissolved by the slag.  相似文献   

17.
Hot corrosion is one of the main destructive factors in thermal barrier coatings (TBCs) which come as a result of molten salt effect on the coating–gas interface. Hot corrosion behavior of three types of plasma sprayed TBCs was evaluated: usual CSZ, layer composite of CSZ/Micro Al2O3 and layer composite of CSZ/Nano Al2O3 in which Al2O3 was as a topcoat on CSZ layer. Hot corrosion studies of plasma sprayed thermal barrier coatings (TBCs) were conducted in 45 wt% Na2SO4+55 wt% V2O5 molten salt at 1050 °C for 40 h. The graded microstructure of the coatings was examined using scanning electron microscope (SEM) and X-ray diffractometer (XRD) before and after hot corrosion test. The results showed that no damage and hot corrosion products was found on the surface of CSZ/Nano Al2O3 coating and monoclinic ZrO2 fraction was lower in CSZ/Micro Al2O3 coating in comparison with usual CSZ. reaction of molten salts with stabilizers of zirconia (Y2O3 and CeO2) that accompanied by formation of monoclinic zirconia, irregular shape crystals of YVO4, CeVO4 and semi-cubic crystals of CeO2 as hot corrosion products, caused the degradation of CSZ coating in usual CSZ and CSZ/Micro Al2O3 coating.  相似文献   

18.
《Ceramics International》2019,45(13):16180-16187
SiC/SiO2 coated graphite was prepared via a combined sol-gel coating and catalytic conversion route, using graphite flake and tetraethyl orthosilicate as the starting materials, and Fe(NO3)3·9H2O as the catalyst precursor. X-ray diffraction analysis and microstructural examination revealed that a homogeneous coating comprising SiC and cristobalite (SiO2) and covering the whole surface of graphite was formed. As prepared SiC/SiO2 coated graphite exhibited better oxidation resistance and water wettability than its uncoated counterpart. Also, oxidation resistance and slag corrosion resistance of a model Al2O3–C castable using coated graphite as a carbon source were better than in the case of its counterpart using uncoated graphite.  相似文献   

19.
To improve the resistance of the hydrotransport pipe steel to corrosion and erosion in oil sand slurry, a Ni-Co-Al2O3 composite coating was fabricated by electrolytic deposition on X-65 pipe steel substrate. Potentiodynamic polarization curve and electrochemical impedance measurements show that the deposited coating significantly improves the corrosion resistance of the steel in water-oil-sand solution that simulates the chemistry of oil sand slurry. The corrosion resistance of the coating increases with the increasing Al2O3 particle concentration in electrolyte, cathodic current density, electrode rotating speed and temperature. However, a maximum value of corrosion resistance as a function of the depositing parameters is observed, indicating that the optimal electrodepositing parameters and operating conditions are essential to the maximization of the corrosion resistance of the coated steel in oil sand slurry. The optimal depositing conditions are suggested in the given system. The morphology, structure and composition of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The Ni-Co-Al2O3 composite coating develops a compact, uniform, nodular structure with an average thickness of 50-200 microns. The Al2O3 amount in the coating increases with the increasing Al2O3 concentration in electrolyte, which also enhances the co-deposition of Ni and Co. The micro-hardness and wear resistance of the composite coatings are much higher than the steel substrate and increase with the increasing Al2O3 particle amount in the coating.  相似文献   

20.
A new tri‐layer Yb2SiO5/Yb2Si2O7/Si coating was fabricated on SiC, C/SiC, and SiC/SiC substrates, respectively, using atmospheric plasma spray (APS) technique. All coated samples were subjected to thermal shock test at 1350°C. The evolution of phase composition and microstructure and thermo‐mechanical properties of those samples before and after thermal shock test were characterized. Results showed that adhesion between all the 3 layers and substrates appeared good. After thermal shock tests, through microcracks which penetrated the Yb2SiO5 top layer were mostly halted at the Yb2SiO5‐Yb2Si2O7 interface and no thermal growth oxide (TGO) was formed after 40‐50 quenching cycles, implying the excellent crack propagation resistance of the environmental barrier coating (EBC) system. Transmission electron microscopy analysis confirmed that twinnings and dislocations were the main mechanisms of plastic deformation of the Yb2Si2O7 coating, which might have positive effects on crack propagation resistance. The thermal shock behaviors were clarified based on thermal stresses combined with thermal expansion behaviors and elastic modulus analysis. This study provides a strategy for designing EBC systems with excellent crack propagation resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号