首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mullite ceramic was prepared using kaolinite and synthesized alumina (combustion route) by solid-state interaction process. The influence of TiO2 and MgO additives in phase formation, microstructural evolution, densification, and mechanical strengthening was evaluated in this work. TiO2 and MgO were used as sintering additives. According to the stoichiometric composition of mullite (3Al2O3·2SiO2), the raw materials, ie kaolinite, synthesized alumina, and different wt% of additives were wet mixed, dried, and uniaxially pressed followed by sintering at different temperature. 1600°C sintered samples from each batch exhibit enhanced properties. The 1 wt% TiO2 addition shows bulk density up to 2.96 g/cm3 with a maximum strength of 156.3 MPa. The addition of MgO up to 1 wt% favored the growth of mullite by obtaining a density and strength matching with the batch containing 1 wt% TiO2. These additives have shown a positive effect on mullite phase formation by reducing the temperature for complete mullitization by 100°C. Both additives promote sintering by liquid phase formation. However, the grain growth, compact microstructure, and larger elongated mullite crystals in MgO containing batch enhance its hardness properties.  相似文献   

2.
《Ceramics International》2020,46(17):27175-27183
The fabrication of silicon nitride (Si3N4) ceramics with a high thermal conductivity was investigated by pressureless sintering at 1800 °C for 4 h in a nitrogen atmosphere with MgO and Y2O3 as sintering additives. The phase compositions, relative densities, microstructures, and thermal conductivities of the obtained Si3N4 ceramics were investigated systemically. It was found that at the optimal MgO/Y2O3 ratio of 3/6, the relative density and thermal conductivity of the obtained Si3N4 ceramic doped with 9 wt% sintering aids reached 98.2% and 71.51 W/(m·K), respectively. EDS element mapping showed the distributions of yttrium, magnesium and oxygen elements. The Si3N4 ceramics containing rod-like grains and grain boundaries were fabricated by focused ion beam technique. TEM observations revealed that magnesium existed as an amorphous phase and that yttrium produced a new secondary phase.  相似文献   

3.
《Ceramics International》2022,48(18):26022-26027
Aluminum nitride (AlN) is used a ceramic heater material for the semiconductor industry. Because extremely high temperatures are required to achieve dense AlN components, sintering aids such as Y2O3 are typically added to reduce the sintering temperature and time. To further reduce the sintering temperature, in this study, a low-melting-temperature glass (MgO–CaO–Al2O3–SiO2; MCAS) was used as a sintering additive for AlN. With MCAS addition, fully dense AlN was obtained by hot-press sintering at 1500 °C for 3 h at 30 MPa. The mechanical properties, thermal conductivity, and volume resistance of the sintered AlN–MCAS sample were evaluated and compared with those of a reference sample (AlN prepared with 5 wt% Y2O3 sintering aid sintered at 1750 °C for 8 h at 10 MPa). The thermal conductivity of AlN prepared with 0.5 wt% MCAS was 91.2 W/m?K, which was 84.8 W/m?K lower than that of the reference sample at 25 °C; however, the difference in thermal conductivity between the samples was only 14.2 W/m?K at the ceramic-heater operating temperature of 500 °C. The flexural strength of AlN–MCAS was 550 MPa, which was higher than that of the reference sample (425 MPa); this was attributed to the smaller grain size achieved by low-temperature sintering. The volume resistance of AlN–MCAS was lower than that of the reference sample in the range of 200–400 °C. However, the resistivity of the proposed AlN–MCAS sample was higher than that of the reference sample (500 °C) owing to grain-boundary scattering of phonons. In summary, the proposed sintering strategy produces AlN materials for heater applications with low production cost, while achieving the properties required by the semiconductor industry.  相似文献   

4.
《Ceramics International》2023,49(5):7236-7244
A method for preparation of dense Y2O3–MgO composite ceramics by the microwave sintering was developed. The initial powders were obtained by glycine-nitrate self-propagating high-temperature synthesis (SHS) with different oxidant-to-fuel ratio. Density and IR-transmission of microwave sintered Y2O3–MgO ceramics increase with respect to dispersity of the SHS-powders and reach its maximum values for the powder prepared in a 20% fuel excess. The sintering behavior of Y2O3–MgO compacts was investigated by optical dilatometry and measuring an electric conductivity upon heating. Significant microwave radiation power surges at temperatures of 900–1000 °C, caused by the decomposition of magnesium carbonate, have been found. As a result of matching the conditions for the synthesis of powders and sintering modes, a transmission of composite ceramics of 78% at a wavelength of 6 μm was achieved at a maximum processing temperature of 1500 °C.  相似文献   

5.
Polycrystalline SiC ceramics with 10 vol% Y2O3-AlN additives were sintered without any applied pressure at temperatures of 1900-2050°C in nitrogen. The electrical resistivity of the resulting SiC ceramics decreased from 6.5 × 101 to 1.9 × 10−2 Ω·cm as the sintering temperature increased from 1900 to 2050°C. The average grain size increased from 0.68 to 2.34 μm with increase in sintering temperature. A decrease in the electrical resistivity with increasing sintering temperature was attributed to the grain-growth-induced N-doping in the SiC grains, which is supported by the enhanced carrier density. The electrical conductivity of the SiC ceramic sintered at 2050°C was ~53 Ω−1·cm−1 at room temperature. This ceramic achieved the highest electrical conductivity among pressureless liquid-phase sintered SiC ceramics.  相似文献   

6.
Aiming to manufacture low‐cost silicon nitride components, a low‐cost β powder was chosen as a raw powder and low‐temperature sintering at 1550–1600°C under atmospheric pressure nitrogen was carried out. The silicon nitride from β powder with 5 wt% Y2O3 and 5 wt% MgAl2O4 additives and sintered at 1600°C for 8 h was successfully densified, and it exhibited moderate strength and toughness of 553 MPa ± 22 and 3.5 MPa m1/2, respectively. The results indicate that the low‐temperature sintering of the low‐cost β powder has a potential to reduce cost of components.  相似文献   

7.
A variety of combinations of Y2O3 and MgO were used as additives in preparing Si3N4 ceramics by the sintering of reaction-bonded silicon nitride (SRBSN) method. By varying the amount of Y2O3 in the range of 0-5 mol% and that of MgO in the range of 0-8 mol%, the effects of Y2O3 and MgO additives on nitridation and sintering behaviors as well as thermal conductivity were studied. It was found that appropriate amount and combination of Y2O3 and MgO additives were essential for attaining full densification and achieving high thermal conductivity. The sample doped with 2.5 mol% of Y2O3 and 5 mol% of MgO attained a thermal conductivity of 128 Wm−1K−1 when sintered at 1900°C for 6 hours, and the sample doped with 2 mol% of Y2O3 and 4 mol% of MgO achieved a thermal conductivity of 156 Wm−1K−1 when sintered for 24 hours.  相似文献   

8.
The aim of this research was to investigate the effect of sintering additive and relatively low-sintering temperature on the thermal conductivity of aluminum nitride nanoceramic. While using nanosized AlN powder and liquid-phase sintering additives, the various sintering processes were performed at temperatures 1400 and 1500°C for several hours. In the analysis methods, thermal conductivity (K) and thermal diffusivity (α) were measured using thermal conductivity analyzer (Hot Disk), scanning electron microscope (SEM) was used to observe the surface morphology of the microstructure, x-ray diffraction analyzer (XRD) to analyze the grain size and crystal structure, Raman spectroscopy (Raman) emission spectrum was analyzed to identify the material microstructure and the densities of AlN specimens were measured by Archimedes method. It was found that the thermal conductivity is related to the densification of nanosize low-temperature sintered material, which can be controlled by additives and sintering temperature. With Y2O3 sintering add, the densification of AlN for low-temperature sintering increased by the factor of ~5% to ~12%, and the thermal conductivity was enhanced by 25%. The relative density observed in this research is about 78%-84%, and the thermal conductivity measured is in the range of 9-14 W/mK.  相似文献   

9.
《Ceramics International》2021,47(19):27372-27385
Magnesium aluminate spinel with an initial MgO: Al2O3 molar ratio of 2:1 was prepared from its constituent oxides through a solid-state sintering process at temperatures ranging from 1550 to 1700 °C in a normal air atmosphere. The effect of varying amount (0.25–1.0 wt%) of TiO2 and Yb2O3 on densification, phase assemblage, mechanical, thermo-mechanical properties and microstructure of magnesia-rich spinel were investigated under static heating condition. The addition of TiO2 and Yb2O3 favours the densification of magnesia-rich spinel, which is discernible up to 1650 °C. This beneficial effect may be attributed to the development of the secondary phase and formation of solid solution due to the dissolution of the additive ions in the spinel structure. A marginal increase in the average grain size of the samples along with a narrower grain size distribution occurred with the incorporation of both the additives. Both the additives improved the mechanical properties of the magnesia-rich spinel; however, better room temperature flexural strength was achieved with Yb2O3 as compared to TiO2 addition. For the samples sintered at 1550 °C, 1.0 wt% Yb2O3 addition resulted in 30% increase in flexural strength; however, same amount of TiO2 addition increased the strength by 20%. In case of thermal shock resistance, 1.0 wt% TiO2 and 0.25 wt% Yb2O3 addition demonstrated promising result among all the samples.  相似文献   

10.
Sintered reaction-bonded silicon nitride (SRBSN) with high thermal conductivity was obtained using (Y0.96Eu0.04)2O3 and MgO as sintering additives. Green compacts were nitrided at 1400°C for 4 h. Post-sintering was carried out at 1850 and 1900°C for 4 h, respectively. In reaction-bonded silicon nitride (RBSN) doped with Y2O3 and MgO, the β-Si3N4 content and nitridation degree were 51.1% and 93.8%, respectively. However, the β-Si3N4 content and nitridation degree were 72.6% and 96.7% in a nitrided compact doped with (Y0.96Eu0.04)2O3 and MgO. After post-sintering, the phase composition, microstructure, mechanical properties, and thermal conductivity were investigated. After sintering at 1900°C for 4 h, the thermal conductivity of SRBSN doped with (Y0.96Eu0.04)2O3 and MgO was increased by 16.5% compared to that of the samples doped with Y2O3 and MgO. The highest hardness of 1639 HV and the good flexural strength of 776.4 MPa were also achieved in the sample doped with 2-mol.% (Y0.96Eu0.04)2O3 and 5-mol.% MgO.  相似文献   

11.
《Ceramics International》2022,48(5):6138-6147
Alumina ceramics was prepared by pressureless sintering technology in which a CuO–TiO2–Bi2O3 mixture (0–4.0 wt% Bi2O3 and 4.0 wt% CuO and TiO2) was added as dual liquid phase sintering aids. The phase compositions, microstructural feature, and sintering behaviour of the alumina ceramics were analyzed. The results showed that adding 2.5 wt% Bi2O3 to alumina ceramics can increase the contribution rate of initial stage of sintering to the sintering process. The relative density of the sample reached 97.63% after sintering at 1200 °C for 90 min. Measurements from differential scanning calorimetry, with the addition of CuO–TiO2–Bi2O3, demonstrated the formation of two liquid phase points, 827.4 and 936.8 °C. Notably, the solid solution temperature of TiO2 and Al2O3 ceramics diminished thanks to the dual liquid phase sintering aids, and at the same time the activation energy required also dropped from 368.96 to 137.31 kJ/mol. Research indicates that the combined action of dual liquid phase sintering and solid-state reaction sintering has promoted the densification of alumina ceramics during the sintering process while at the same time inhibiting the growth of abnormal grains so that a homogeneous microstructure can be formed.  相似文献   

12.
Sintered reaction‐bonded Si3N4 ceramics with equiaxed microstructure were prepared with TiO2–Y2O3–Al2O3 additions by rapid nitridation at 1400°C for 2 hours and subsequent post‐sintering at 1850°C for 2 hours under N2 pressure of 3 MPa. It was found that α–Si3N4, β–Si3N4, Si2N2O, and TiN phases were formed by rapid nitridation of Si powders with single TiO2 additives. However, the combination of TiO2 and Y2O3–Al2O3 additives led to the formation of 100% β–Si3N4 phase from the nitridation of Si powders at such low temperature (1400°C), and the removal of Si2N2O phase. As a result, dense β–Si3N4 ceramics with equiaxed microstructure were obtained after post‐sintering at high temperature.  相似文献   

13.
The chromium-promoted preparation of forsterite refractory materials from ferronickel slag was investigated by microwave sintering of the slag with the additions of sintered magnesia and 0–10 wt% chromium oxide (Cr2O3). The thermodynamic calculations revealed that the addition of Cr2O3 can promote the formations of spinel and liquid phase and maintain high content of forsterite below 1500 °C. The experimental results showed that there existed a stronger promoting effect of Cr2O3 additive on the properties of refractory materials in the microwave field than that in conventional sintering. It was attributed to the preferential formation and growth of spinel with stronger microwave absorption than other phases (e.g., enstatite), the existence of more forsterite, and the enhanced densification in association with the presence of more liquid phase at the same temperature. By microwave sintering of the mixture of ferronickel slag, 25 wt% sintered magnesia, and 4 wt% Cr2O3 at 1350 °C for 20 min, a superior refractory material with refractoriness of 1801 °C, thermal shock resistance of 6 times, bulk density of 2.97 g/cm3, apparent porosity of 1.4%, and compressive strength of 197 MPa was obtained. Compared with that prepared by conventional sintering at 1350 °C for 2 h, the refractoriness and thermal shock resistance were increased by 175 °C and 100%, respectively. The present study provided a novel method for preparing high-quality refractory materials from ferronickel slag and relevant industrial wastes.  相似文献   

14.
《Ceramics International》2022,48(13):18294-18301
Si3N4 ceramics were prepared using novel two-step sintering method by mixing α-Si3N4 as raw material with nanoscale Y2O3–MgO via Y(NO3)3 and Mg(NO3)2 solutions. Si3N4 composite powders with in situ uniformly distributed Y2O3–MgO were obtained through solid–liquid (SL) mixing route. Two-step sintering method consisted of pre-deoxidization at low temperature via volatilization of in situ-formed MgSiO3 and densification at high temperature. Variations in O, Y, and Mg contents in Si3N4–Y2O3–MgO during first sintering step are discussed. O and Mg contents decreased with increasing temperature because SiO2 on Si3N4 surface reacted with MgO to form low-melting-point MgSiO3 compound, which is prone to volatilize at high temperature. By contrast, Y content hardly changed due to high-temperature stability of Y–Si–O–N quaternary compound. In the second sintering step, skeleton body was densified, and the formation of Y2Si3O3N4 secondary phase occurred simultaneously. Two-step sintered Si3N4 ceramics had lower total oxygen content (1.85 wt%) than one-step sintered Si3N4 ceramics (2.51 wt%). Therefore, flexural strength (812 MPa), thermal conductivity (92.1 W/m·K), and fracture toughness (7.6 MPa?m1/2) of Si3N4 ceramics prepared via two-step sintering increased by 28.7%, 16.9%, and 31.6%, respectively, compared with those of one-step sintered Si3N4 ceramics.  相似文献   

15.
《Ceramics International》2021,47(19):27188-27194
In this paper, 3 mol% yttria-doped tetragonal zirconia polycrystal material (3 mol% Y2O3–ZrO2) was prepared using an optimised pressureless sintering process. The phase change and particle size distribution of Y2O3–ZrO2 during sintering were studied, and the effect of sintering temperature on the properties of Y2O3–ZrO2 was analysed. The raw materials and prepared samples were analysed using XRD, Raman spectroscopy, SEM, and Gaussian mathematical fitting. The results show that sintering encourages the transformation of the monoclinic phase into the tetragonal phase, thus improving the crystallinity of the sample. The relative content of the tetragonal phase in the sample increased from 57.43% to 99.80% after sintering at 1200 °C for 1 h. In the range of sintering temperatures studied in this paper (800–1200 °C), the zirconia material sintered at 1000 °C presented the lowest porosity and the best density.  相似文献   

16.
A second phase of Y2O3-stabilized Bi2O3 (Bi0.75Y0.25O1.5,YSB) is introduced into Y2O3-doped CeO2 (Ce0.8Y0.2O1.9,YDC) as a sintering additive and the composite ceramics of YDC-xYSB (x = 0, 5, 10, 20, 30, 40 wt%) are prepared through sintering at 1100°C for 6 h in air atmosphere. The YDC-xYSB ceramics are composed of both YDC and YSB with cubic fluorite structure, and no other impurity phases are detected in XRD patterns. The relative density of YDC-xYSB rises firstly for x ≤5 wt%, and then it declines with YSB addition from 5 to 40 wt%. The average grain size of YDC decreases from 270 nm to 85.7 nm with YSB addition from 0 to 40 wt%. The YSB phase segregates at the grain boundaries of YDC based on the TEM analysis result. The ionic conductivity of YDC-xYSB (x ≥5 wt%) is lower than that of YDC in the test temperature of 200°C–500°C, while it gradually exceeds that of YDC in 500°C–750°C. At 750°C, the conductivity of YDC-30%YSB (6.22 × 10−2 S/cm) is 1.35 times higher than that of YDC (4.6 × 10−2 S/cm). The YSB addition can improve the ionic conductivity of YDC in 500°C–750°C and decrease its sintering temperature.  相似文献   

17.
Dense Si3N4 ceramics were fabricated by pressureless sintering at a low temperature of 1650°C with a short holding period of 1 h under a nitrogen atmosphere. The role of ternary oxide additives (Y2O3–MgO–Al2O3, Y2O3–MgO–SiO2, Y2O3–MgO–ZrO2) on the phase, microstructure, and mechanical properties of Si3N4 was examined. Only 5 wt.% of Y2O3–MgO–Al2O3 additive was sufficient to achieve >98% of theoretical density with remarkably high biaxial strength (∼1200 MPa) and prominent hardness (∼15.5 GPa). Among the three additives used, Y2O3–MgO–Al2O3 displayed the finest grain diameter (0.54 μm), whereas Y2O3–MgO–ZrO2 produced the largest average grain diameter (∼0.95 μm); the influence was seen on their mechanical properties. The low additive content Si3N4 system is expected to have superior high-temperature properties compared to the system with high additive content. This study shows a cost-effective fabrication of highly dense Si3N4 with excellent mechanical properties.  相似文献   

18.
《Ceramics International》2023,49(20):32868-32873
This study introduces transparent MgO ceramics produced via simply vacuum sintering at 1200–1500 °C by optimal incorporation of MgF2 as a sintering additive. The effect of MgF2 content and sintering temperature on the densification process, optical, and thermal properties of MgO ceramics is presented with emphasis on its function as a sintering aid and adverse effect of MgF2 evaporation in the condition of high MgF2 content or high sintering temperature. MgO ceramic with 1.0 mol% MgF2 sintered at 1300 °C exhibits the highest relative density of 99.95% with average grain size of 17.46 μm. The in-line transmittance attains 60% at 1000 nm and >80% in the infrared range (3.8–6.8 μm), without absorption bands originated from the carbon contamination. The corresponding room-temperature thermal conductivity reaches 47.25 W/(m∙K). These results demonstrate that MgF2 is an outstanding sintering additive for the preparation transparent MgO ceramics.  相似文献   

19.
《Ceramics International》2023,49(15):24948-24959
Aluminum nitride ceramics were prepared by aqueous gelcasting method and pressureless sintering technique in N2 atmosphere using Y2O3 as sintering additives with nontoxic curdlan as gel system. The solidification mechanism of curdlan was studied. The effects of curdlan content and solid content on the microstructure, relative density and flexural strength of green bodies were investigated. The influences of Y2O3 content and sintering soaking time on the microstructure and properties of sintered bodies were also studied. The results show that, as the temperature increases to 80 °C, the ceramic powders solidify through three-dimensional gel networks of curdlan during gelling process. The green bodies can be successfully fabricated through aqueous gelcasting method with modified powder as original materials. Suitable curdlan content and solid content contribute to fabricating green body with uniform microstructures and high flexural strength. The relative density and flexural strength of sintered bodies enhance as the Y2O3 content and soaking time increase. The flexural strength and thermal conductivity are about 107.5∼172.3 MPa and 75.2∼112.5 W/(m·K), respectively. The sintered body with 4 wt% Y2O3 soaking for 3 h exhibits the highest thermal conductivity because of appropriate relative density, uniform microstructure and reasonable intergranular phase distribution. The mechanical property and thermal conductivity of sintered bodies can be improved by optimizing the gelcasting process parameter, Y2O3 content, and soaking time. The nontoxic gelling system will have wide application for aqueous gelcasting ceramic with complex shape.  相似文献   

20.
Cubic-stabilized zirconia ceramic composites have been synthesized by conventional sintering, starting from commercial m-ZrO2, Y2O3, and waste-derived magnesium aluminate spinel (MA) powders. In this work, the effect of sintering temperature and MA content on stabilization and densification properties of YSZ have been duly considered. MA-free YSZ0 composite sintered at 1600°C-1700°C revealed m- and t-ZrO2 dual-phase structure where its m-ZrO2 was partially stabilized upon temperature rising into tetragonal phase by Y3+ diffusion inside zirconia structure. YSZ10-50 composites containing 10-50 wt% MA demonstrated dissimilar behavior where their m-ZrO2 was transformed and stabilized into a cubic form by diffusion of Y3+, Mg+2, and Al+3 inside zirconia lattice. Furthermore, densification of YSZ10-50 powder mixtures by conventional sintering at 1600°C for 2 hours resulted in fully dense compacts with micrometer-sized grains. The outcomes indicate that MA has a significant effect on m-ZrO2 stabilization into the cubic phase structure at room temperature. In this respect, this study offers huge potentials for developing fully stabilized c-ZrO2 ceramics that could be possibly used as industrial ceramics for structural applications of harsh chemical and thermal environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号