首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rheological behaviour of commercial milk protein/κ-carrageenan mixtures in aqueous solutions was studied at neutral pH. Four milk protein ingredients; skim milk powder, milk protein concentrate, sodium caseinate, and whey protein isolate were considered. As seen by confocal laser microscopy, mixtures of κ-carrageenan with skim milk powder, milk protein concentrate, and sodium caseinate showed phase separation, but no phase separation was observed in mixtures containing whey protein isolate. For κ-carrageenan concentrations up to 0.5 wt%, the viscosity of the mixtures at low shear rates increased markedly in the case of skim milk powder and milk protein concentrate addition, but did not change by the addition of sodium caseinate or whey protein isolate. For κ-carrageenan concentrations from 1 to 2.5 wt%, small and large deformation rheological measurements, performed on the milk protein/κ-carrageenan gels, showed that skim milk powder, milk protein concentrate or sodium caseinate markedly improved the strength of the resulting gels, but whey protein isolate had no effect on the gel stength.  相似文献   

2.
Ice milk mixes were made with and without stabilizer/emulsifier as well as with and without milk protein isolate (sodium caseinate or whey protein isolate). The mixes were evaluated for rheological, freezing, melting, and sensory properties. Adding a stabilizer/emulsifier blend to ice milk changed its physical properties more than adding milk protein isolates. The mixes with stabilizer/emulsifier exhibited increased viscosity and chewiness and decreased drainage rate, iciness, and vanilla flavor intensity. The mixes with added caseinate exhibited increased viscosity compared with those with added whey protein isolate. Overall, the quality of ice milk mix was more dependent on stabilizer/emulsifier addition than on milk protein isolate addition.  相似文献   

3.
《Food Hydrocolloids》2001,15(4-6):565-574
The behavior of commercial milk protein/xanthan mixtures was studied at neutral pH. Four milk protein ingredients; skim milk powder, milk protein concentrate, sodium caseinate and whey protein isolate were considered. For the xanthan concentrations used, up to 1wt%, the viscosity of the mixtures was dominated by the viscosity of xanthan. Mixtures of xanthan with skim milk powder or milk protein concentrate showed phase separation, as seen by confocal micrographs, and phase diagrams have been established for these two systems. No visible phase separation was observed in the case of mixtures of sodium caseinate or whey protein isolate systems. However, mixtures of sodium caseinate and xanthan, under certain conditions, showed formation of ‘thread-like’ xanthan-rich regions by confocal microscopy. We believe that the phase separation occurring in milk protein concentrate/xanthan or skim milk powder/xanthan mixtures was a result of depletion flocculation of casein micelles by the xanthan macromolecules, but thermodynamic incompatibility was likely to occur in sodium caseinate/xanthan mixtures.  相似文献   

4.
The Rheological behavior of mozzarella cheese filled with various proteins (whey protein, caseinate, egg white, soy protein isolate, gelatin) incorporated was determined by uniaxial compression at 10°C and the effect of temperature (10°C?60°C) by dynamic measurement. Mozzarella cheese with whey protein, caseinate, egg white, and soy protein isolate showed significant water retention during heating. Among the proteins, soy protein isolate induced the strongest gel network structure with mozzarella cheese. All proteins altered the viscoelastic properties of mozzarella cheese.  相似文献   

5.
A colaborative study was conducted to develop a rapid, simple and reliable procedure for determining the solubility of food protein products, e.g., spray-dried whey protein concentrate, sodium caseinate, egg white protein and soy protein isolate. The procedure was developed by modifying the nitrogen solubility index (NSI) procedure. Protein content and soluble protein were determined by micro-Kjeldahl or biuret procedures with standard deviations of 0.83-4.12 for all proteins except caseinate which had a value of 13.95. Although the biuret and micro-Kjeldahl procedures generally provided comparable accuracy and precision for protein content and solubility of certain proteins, the biuret procedure exhibited considerable error and variability for other proteins.  相似文献   

6.
Functional properties, amino acid compositions, in vitro protein digestibility, electrophoretic and thermal characteristics of conophor defatted flour (CDF), conophor protein concentrate (CPC), isoelectric protein isolate (CII) and neutral protein isolate (CNI) were evaluated. The isolates (CII and CNI) showed significantly lower (P < 0.05) water and oil absorption capacities, emulsifying and gelling capacities, but higher emulsion stability and foaming capacity. In vitro protein digestibility, enthalpy and denaturation temperature varied between 52.28% and 73.4%, 1.62–4.04 J g?1 protein and 79.7–89.3 °C, respectively. The native proteins were comprised of subunits with molecular weights ranging between 15.3 and 129.3 kDa. The major amino acids in all the samples were aspartic acid, glutamic acid and arginine, whereas the percentages of essential amino acids in CDF, CPC, CII and CNI were 39.35%, 40.46%, 44.54% and 46.04%, respectively. Conophor protein products could be used as functional ingredients in food formulations and for enriching low quality protein diets.  相似文献   

7.
A Method for the Measurement of Foam Formation and Stability   总被引:1,自引:0,他引:1  
A whipping method for the measurement of overrun and foam stability was developed. Using this method the characteristic foams formed by the following proteins were studied: sodium caseinate, milk protein isolate and whey protein. The method was able to detect differences between foams produced by different proteins. The effects of copper sulfate and proteose-peptone on egg white foams were studied to show the reliability of the method. It was demonstrated that the addition of ImM copper sulfate stabilized (p < 0.05) foams made from both fresh and powdered egg white. Addition of proteose-peptone (0.05% and 0.1%) reduced the overrun and destabilized egg white foams.  相似文献   

8.
采用全自动氨基酸分析仪分别测定人乳、牛乳、羊乳氨基酸组成。应用模糊识别法和氨基酸比值系数、氨基酸比值系数分等指标全面评价3种乳乳清部分营养价值。采用傅里叶红外光谱的酰胺Ⅰ带和酰胺Ⅲ带测定3种乳中乳清蛋白的天然二级构象。结果表明:羊乳乳清部分必需氨基酸与总氨基酸比值为0.450,全鸡蛋蛋白贴近度与联合国粮食及农业组织/世界卫生组织贴近度分别为0.919 7、0.925 0,2种氨基酸比值系数分分别为68.47、76.56,在氨基酸营养评价上营养价值较高。羊乳乳清蛋白二级结构中的α-螺旋比例为20.26%,与人乳的27.37%更为接近,一定程度上更利于人体吸收。因此,羊乳是相比牛乳较好的婴幼儿功能性食品原料。  相似文献   

9.
Foods may contain more than one type of protein, and food formulators sometimes combine different proteins for desired synergistic textural benefits. Egg albumin, fish protein isolate, or soy protein isolate were blended with calcium caseinate or whey protein isolate and mixed in water adjusted to pH 2.5, 6.8, and 9.0 at 25 or 60°C. The effect of pH and temperature on solubility, viscosity, and the structure of the resulting gels were determined. The viscosity at the most soluble concentration at 25°C were: egg albumin (175.2 mPa.s/35 wt%), fish protein isolate (2207.4 mPa.s/30 wt%), soy protein isolate (2531.5 mPa.s/10 wt%), calcium caseinate (1115.8 mPa.s/15 wt%), and whey protein isolate (161.2 mPa.s/35%). In mixed protein systems viscosity values were reduced. The values for calcium caseinate or whey protein isolate with egg albumin, at the protein level of 15 g/100 g were: calcium caseinate/egg albumin (10:5 wt%) 535.1 mPa.s and whey protein isolate/egg albumin (10:5 wt%) 8.7 mPa.s. Microscopy imaging revealed changes in protein aggregation clusters during heating of calcium caseinate, egg albumin, and whey protein isolate. Egg albumin acted synergistically to increase viscosity, while fish protein isolate acted antagonistically to reduce viscosity. This knowledge is useful to manufacturers who may seek to enhance food texture by blending different proteins.  相似文献   

10.
Six protein sources, casein, field peas, peanut meal, wheat flour, rapeseed and soya bean concentrate and their blends (ratio 1:1) were subjected to in vitro enzymic digestion. Wheat flour had the lowest in vitro digestibility (30% in 6 h) while the other sources had similar digestibilities (40%). Basic and aromatic amino acids were the most readily liberated from these protein sources. Some protein combinations, such as a rapeseed/field pea blend, gave in vitro digestibilities higher than calculated from individual proteins. The type of response observed could not be predicted from either nitrogen digestibility or amino acid composition of the individual sources. The digestibility of some amino acids was modified and this could be due to varying affinity of digestive enzymes for the protein.  相似文献   

11.
QUALITY OF COFFEE CREAMERS AS A FUNCTION OF PROTEIN SOURCE   总被引:1,自引:0,他引:1  
Many U.S. consumers add a sweetener or creaming agent to their brewed coffee. An ideal creamer, when added to coffee, should remain stable, dissolve readily, and provide whitening ability. In general, these properties are imparted by the protein component. Four different proteins – sodium caseinate, isolated wheat protein, soy protein isolate and whey protein concentrate – were used to formulate coffee creamers, individually and in combination, and the resultant creamers were evaluated for functionality. Coffee creamers containing plant proteins had significantly greater apparent viscosity but lower L* values than did creamers made with dairy proteins. Creamers made with higher concentrations of isolated wheat protein exhibited syneresis, whereas no syneresis occurred if sodium caseinate was the predominant protein. Only the creamer formulated with soy protein isolate alone exhibited feathering when added to hot, brewed coffee. These results indicate that coffee creamers can be formulated with plant proteins and sodium caseinate.  相似文献   

12.
In vitro iron availability (IA) from egg white meals was 14–17% of total meal iron. When mushroom (Agaricus bisporus) was added to egg white meals, IA decreased. The initially low IA from whey protein concentrate meals (<1% of meal iron) was enhanced by mushroom. Sodium benzoate or sodium bisulfite added to egg white/ mushroom meals increased IA. Addition of polyphenoloxidase (PPO) and gallic acid to egg white meals decreased IA; however, gallic acid alone increased IA. Blanching mushrooms eliminated PPO activity and increased IA of egg white/mushroom meals, but it was still less than for egg white meals. Sodium bisulfite added to blanched mushroom/egg white meals increased IA above that for egg white meals. Results are consistent with the interpretation that enzymatic browning can decrease IA.  相似文献   

13.
An apparatus for the investigation of milk protein foams was introduced based on three jacket columns and exclusively image analysis. The method had a repetition coefficient <10%, and offered a high sample throughput and an expandable design. Sodium caseinate, micellar casein concentrate, whey protein isolate and whey protein concentrate foams were analysed as an application. Foaming properties depended on the protein, the composition of the preparations and the foaming conditions, e.g., stable foams at 20 °C were observed for micellar casein, while sodium caseinate showed a half-life of 22 min. At 50 °C, the stability of sodium caseinate decreased by about 70%. Additionally, a direct link between the foaming properties of sodium caseinate and its degree of enzymatic hydrolysis was found. No changes in foaming properties using Alcalase® 2.5L occurred up to a degree of hydrolysis of about 3%, while higher degrees of hydrolysis led to decreased foaming properties.  相似文献   

14.
The addition of dairy proteins to exhaustively washed chicken breast muscle improved the emulsion stability in heated cream layers (emulsions) containing whey protein concentrate (WPC) or whey protein isolate (WPI). The initial weight of the heated cream layers made with WPC or WPI was heavier than those for sodium caseinate (CNate) or milk protein isolate (MPI). The addition of CNate or MPI resulted in decreased emulsion stability and increased inhibition of myosin heavy chain and actin participation in the emulsion formation compared to WPC or WPI.  相似文献   

15.
Strong protein gel networks may result from synergistic interactions with other proteins or food materials above that are not achievable with a single protein alone. The varying flow and viscoelastic behavior of calcium caseinate or whey protein isolate mixed with egg albumin, fish protein isolate, soy protein isolate, or wheat gluten in a model system with wheat flour and glycerol as starch and oil surrogates was determined. Temperature sweeps revealed peak tan δ values as the proteins aggregated. Single protein gels of calcium caseinate, soy protein isolate, and wheat gluten were predominantly elastic, while egg albumin and whey protein isolate gels were mostly viscous. For example, egg albumin steady shear viscosities were: 0.0145 Pa s (0.5 min) and 0.1331 Pa s (45 min), and whey protein isolate 0.0003 Pa s (0.5 min) and 0.0024 Pa s (45 min); but combined with whey protein isolate (whey protein isolate/egg albumin: 10/5 wt%), the apparent viscosity values dropped to 0.0053 Pa.s (0.5 min) and 0.0221 Pa s (45 min), respectively.  相似文献   

16.
Maillard Reaction Products as Encapsulants for Fish Oil Powders   总被引:2,自引:0,他引:2  
The use of Maillard reaction products for encapsulation of fish oil was investigated. Fish oil was emulsified with heated aqueous mixtures comprising a protein source (Na caseinate, whey protein isolate, soy protein isolate, or skim milk powder) and carbohydrates (glucose, dried glucose syrup, oligosaccharide) and spray‐dried for the production of 50% oil powders. The extent of the Maillard reaction was monitored using L*, a*, b* values and absorbance at 465 nm. Encapsulation efficiency was gauged by measurement of solvent‐extractable fat and the oxidative stability of the fish oil powder, which was determined by assessment of headspace propanal after storage of powders at 35 °C for 4 wk. Increasing the heat treatment (60 °C to 100 °C for 30 to 90 min) of sodium caseinate‐glucose‐glucose syrup mixtures increased Maillard browning but did not change their encapsulation efficiency. The encapsulation efficiency of all heated sodium caseinate‐glucose‐glucose syrup mixtures was high, as indicated by the low solvent‐extractable fat in powder (<2% powder, w/w). However, increasing the severity of the heat treatment of the sodium caseinate‐glucose‐glucose syrup mixtures reduced the susceptibility of the fish oil powder to oxidation. The increased protection afforded to fish oil in powders by increasing the temperature‐time treatment of protein‐carbohydrate mixtures before emulsification and drying was observed irrespective of the protein (sodium caseinate, whey protein isolate, soy protein isolate, or skim milk powder) and carbohydrate (glucose, glucose/dried glucose syrup, or oligosaccharide/dried glucose syrup) sources used in the formulation. Maillard reaction products produced by heat treatment of aqueous protein‐carbohydrate mixtures were effective for protecting microencapsulated fish oil and other oils (evening primrose oil, milk fat) from oxidation.  相似文献   

17.
The effect of different protein mixtures (pea, whey and egg white proteins) on the physical characteristics of batters and baked gluten-free layer cakes after substituting 45% of flour was evaluated. A mixture design approach was used to determine the interaction effects of the three proteins on the cakes physical characteristics. For batter density, two interactions were observed, and higher values were found for batters containing a mixture of 60–80% egg white and 20–40% whey than in batter containing only one of these proteins, or a pea content of 70–90% than in batter containing only pea. For batter viscosity, significant interactions between egg white and pea, and between whey and pea proteins were observed, which explains the gentler decrease in viscosity at higher egg white and/or whey protein ratios. Regarding hardness, an interaction between egg white and whey occurred, and increasing whey content helped to reduce hardness to a greater extent than increasing pea content.  相似文献   

18.
A collaborative study involving nine laboratories was conducted over four years to evaluate a rapid, simple and reliable whipping method for measuring overrun and foam stability. Effectiveness of the method was assessed by measuring the characteristics of foams formed by three protein solutions (5%): sodium caseinate, milk protein isolate, and egg white protein; identifying and systematically eliminating sources of variability. Major sources of variability were protein dispersing technique, the mixer, and the care exercised by the operator during sampling and weighing. The method detected differences in foam stability between egg white, casein and milk protein isolate (pooled SD = 4.5) using different mixers.  相似文献   

19.
The coagulation behavior and the kinetics of protein hydrolysis of skim milk powder, milk protein concentrate (MPC), calcium-depleted MPC, sodium caseinate, whey protein isolate (WPI), and heated (90°C, 20 min) WPI under gastric conditions were examined using an advanced dynamic digestion model (i.e., a human gastric simulator). During gastric digestion, these protein ingredients exhibited various pH profiles as a function of the digestion time. Skim milk powder and MPC, which contained casein micelles, formed cohesive, ball-like curds with a dense structure after 10 min of digestion; these curds did not disintegrate over 220 min of digestion. Partly calcium-depleted MPC and sodium caseinate, which lacked an intact casein micellar structure, formed curds at approximately 40 min, and a loose, fragmented curd structure was observed after 220 min of digestion. In contrast, no curds were formed in either WPI or heated WPI after 220 min of digestion. In addition, the hydrolysis rates and the compositions of the digesta released from the human gastric simulator were different for the various protein ingredients, as detected by sodium dodecyl sulfate-PAGE. Skim milk powder and MPC exhibited slower hydrolysis rates than calcium-depleted MPC and sodium caseinate. The most rapid hydrolysis occurred in the WPI (with and without heating). This was attributed to the formation of different structured curds under gastric conditions. The results offer novel insights about the coagulation kinetics of proteins from different milk protein ingredients, highlighting the critical role of the food matrix in affecting the course of protein digestion.  相似文献   

20.
Imitation creamer formulations were spray dried and agglomerated on a pilot scale tall-form drier in order to evaluate the stability of the resulting powders when added to hot aqueous coffee solutions. The study explored the effects of different protein ingredients (sodium caseinate; milk protein concentrate; whey protein concentrate; milk proteinate; soluble wheat protein) in combination with non-protein emulsifiers and disodium hydrogen orthophosphate. Adaptation of coffee stability test methodology was necessary to take account of the presence of significantly more 'floaters' in the case of imitation coffee whiteners which did not sediment during centrifugation. A new non-dairy protein, soluble wheat protein, proved to have exceptional stabilizing ability compared to all other protein ingredients evaluated. Sodium caseinate performed the best out of the dairy proteins, while formulations incorporating milk protein concentrate tended to be the least stable. When working with whey protein concentrate as the principal ingredient source, an emulsifier system based on mono/diglycerides was inadequate, and it was necessary to use a combination of polysorbate and sodium stearoyl lactylate in its place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号