首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Porous 45S5 Bioglass®-based glass–ceramic scaffolds with high porosity (96%) and interconnected pore structure (average pore size 300 μm) were prepared by foam replication method. In order to improve the mechanical properties and to incorporate a drug release function, the scaffolds were coated with a drug loaded solution, consisting of PHBV and vancomycin. The mechanical properties of the scaffolds were significantly improved by the PHBV coating. The bioactivity of scaffolds upon immersion in SBF was maintained in PHBV coated scaffolds although the formation of hydroxyapatite was slightly retarded by the presence of the coating. The encapsulated drug in coated scaffolds was released in a sustained manner (99.9% in 6 days) as compared to the rapid release (99.5% in 3 days) of drug directly adsorbed on the uncoated scaffolds. The obtained drug loaded and bioactive composite scaffolds represent promising candidates for bone tissue engineering applications.  相似文献   

2.
A new method to enhance the flexural strength of porous β-tricalcium phosphate (β-TCP) scaffolds was developed. This new method provides better control over the microstructures of the scaffolds and enhances the scaffolds’ mechanical properties. Using this technique, we were able to produce scaffolds with mechanical and structural properties that cannot be attained by either the polymer sponge or slip-casting methods alone or by simply combining the polymer sponge and slip-casting methods. The prepared scaffolds had an open, uniform, interconnected porous structure with a bimodal pore size of 100.0–300.0 μm. The flexural strength of the bimodal porous β-TCP scaffold sintered at 1200 °C was 56.2 MPa and had porosity of 61.4 vol%. The scaffolds obtained provide good mechanical support while maintaining bioactivity, and hence, these bioscaffolds hold promise for applications in hard-tissue engineering.  相似文献   

3.
《Ceramics International》2016,42(12):13761-13772
The incorporation of a bioactive inorganic phase in polymeric scaffolds is a good strategy for the improvement of the bioactivity and the mechanical properties, which represent crucial features in the field of bone tissue engineering. In this study, spray-dried mesoporous bioactive glass particles (SD-MBG), belonging to the binary system of SiO2-CaO (80:20 mol%), were used to prepare composite scaffolds by freeze-drying technique, using a silk fibroin matrix. The physico-chemical and biological properties of the scaffolds were extensively studied. The scaffolds showed a highly interconnected porosity with a mean pore size in the range of 150 µm for both pure silk and silk/SD-MBG scaffolds. The elastic moduli of the silk and silk/SD-MBG scaffolds were 1.1±0.2 MPa and 6.9±1.0 MPa and compressive strength were 0.5±0.05 MPa and 0.9±0.2 MPa, respectively, showing a noticeable increase of the mechanical properties of the composite scaffolds compared to the silk ones. The contact angle value decreased from 105.3° to 71.2° with the incorporation of SD-MBG particles. Moreover, the SD-MBG incorporation countered the lack of bioactivity of the silk scaffolds inducing the precipitation of hydroxyapatite layer on their surface already after 1 day of incubation in simulated body fluid. The composite scaffolds showed good biocompatibility and a good alkaline phosphatase activity toward human mesenchymal stromal cells, showing the ability for their use as three-dimensional constructs for bone tissue engineering.  相似文献   

4.
In this study, rose petal was used to fabricate osteon-like scaffolds for bone tissue engineering applications. Rose petal was coupled with nanocrystalline forsterite colloid to mimic the lamellar structure of porous osteons. The microstructures on the surface of the petals were utilized as template for pores and lacuna spaces which are suitable for cell attachment. On the other hand, rolling the petals allowed us to form the osteon structure with haversian canal and lacuna spaces on the body of the samples. After trying different temperatures, the results showed that samples annealed at 1100 °C closely mimicked the lacuna spaces, haversian canal, and lamellar structures of osteons. These scaffolds had the pore diameter in the range of about 13–20 μm and presented good bioactivity and biocompatibility. It was found that red rose petal is a good candidate to be used as a template for designing scaffolds for bone tissue engineering applications.  相似文献   

5.
The main objectives of the present study were to fabricate the silicate glass/poly(l-lactide) composite scaffolds for bone engineering applications, by using the freeze-extraction technique, and to evaluate the possibility for optimizing their degradation rate by changing their glass content. The scaffolds characterized by SEM-EDXA, FT-IR, TGA and XRD. Examination of the SEM microphotographs revealed that the pore size of the scaffolds decreased as the glass content increased. The neat polymer scaffold (PLA) had a highly interconnected porous structure with a maximum pore size of 200 μm. For the composite scaffold containing glass content up to 25 wt% (SP25) and up to 50 wt% (SP50), the maximum pore size was 40 μm and 20 μm respectively. The apparent porosity was 56.56%, 52.49% and 48.74% for PLA, SP25 and SP50, respectively. The results of the degradation study showed that the water absorption of the scaffolds decreased by increasing their glass content, It reached finally to 48.71%and 30.93% for SP25 and SP50, respectively. It revealed that also the weight loss of the scaffolds increased by increasing the glass content. The final weight loss was around 5.44%, 9.31% and 26.17% for the PLA, SP25 and SP50, respectively, indicating that it was possible to modulate the degradation rate of the scaffolds by varying their glass content. In addition, the pH measurement of incubation medium indicated that the glass could compensate the acidic degradation products of the polymer. In vitro bioactivity evaluation showed that the composite scaffolds were able to induce the formation of hydroxyapaptite layer on their surfaces, demonstrating their potential application in bone engineering.  相似文献   

6.
The present work focused on the preparation of CEL2 bioactive glass (SiO2–P2O5–CaO–MgO–K2O–Na2O) scaffolds loaded with chitosan microspheres. Chitosan microspheres, with a mean particle size of 0.55 μm ± 0.25 μm and loaded with acetaminophen, were obtained through the water-in-oil single emulsion solvent evaporation method and were adhered to the surface of the scaffolds by a simple dip-coating technique. The characterization of the microsphere-loaded scaffolds, before and after immersion in simulated body fluid (SBF), was performed by scanning electron microscopy, X-ray diffraction, and infrared spectroscopy. In vitro bioactivity was performed for 21 days. The glass-ceramic microsphere-loaded scaffolds showed more than 70% interconnected porosity and an average compressive strength of 1.2 ± 0.43 MPa after immersion in SBF. They also showed the formation of a hydroxyapatite layer from the first day of immersion in SBF, demonstrating their high bioactivity. The microspheres were shown to be homogeneously dispersed on the scaffold surfaces. After 120 hours, the biologic tests showed good fibroblast cell proliferation onto the scaffolds. The encapsulated drug in the microspheres was released by diffusion in a sustained manner (90% and 99% in 200 hours). The results suggest that scaffolds have a promising role in applications of bone tissue engineering.  相似文献   

7.
A complete characterization of a novel family of multifunctional bioactive glass (45S5 composition) (BG)-based scaffolds for bone tissue engineering is presented. Scaffolds were developed via replication method of polyurethane packaging foam and natural marine sponge “Spongia Agaricina”. In order to increase the therapeutic functionality, the scaffolds were coated with mesoporous silica particles (MCM-41), which can act as drug delivery carrier, increase the bioactivity of the combined system and release Si ions, essential for the gene stimulation of osteoblast cells and for inducing new bone matrix formation. The MCM-41 particles were synthetized directly inside the scaffolds (CCM) or after the synthesis they were dispersed in ethanol and used for impregnation (PCM) of the scaffolds. The effect of the particles on the bioactivity of the scaffolds was assessed in simulated body fluid (SBF) for up to 7 days. The results indicate the possibility to obtain a multifunctional BG-scaffold system with enhanced bioactivity and reduced pH increase when in contact with physiological fluids.  相似文献   

8.
《Ceramics International》2017,43(9):6778-6785
In this study, for the first time honeycomb β-tricalcium phosphate (β-TCP) scaffolds were fabricated through an extrusion technique. The physicochemical properties and cell behaviors of the honeycomb β-TCP scaffolds were investigated. The results showed that scaffolds were characterized by ordered channel-like macropores and unidirectional interconnection. The pore structure and mechanical strength could be tailored by changing the parameters of extrusion molds. The pore size of scaffolds was in the range of 400–800 µm approximately, while their compressive strength parallel to the pore direction and porosity ranged from 14 to 20 MPa and 60–70%, respectively. The in vitro cell behavior demonstrated that cells could well attach on the surfaces and grow into the inner channel-like pores of thescaffolds; the scaffolds with higher porosity showed better cell proliferation but poorer cell differentiation. The honeycomb scaffolds fabricated by extrusion technique are potential candidate for bone tissue engineering.  相似文献   

9.
《Ceramics International》2023,49(3):4393-4402
In the present work, we modified the surface morphology of 3D porous ceramic scaffolds by incorporating strontium phosphate (SrP) hollow nano-/microspheres with potential application as delivery system for the local release of therapeutic substances. SrP hollow spheres were synthesized by a template-free hydrothermal method. The influence of the reaction temperature, time and concentration of reactants on precipitates' morphology and size were investigated. To obtain a larger number of open hollow spheres, a new methodology was developed consisting of applying a second hydrothermal treatment to spheres by heating them at 120 °C for 24 h. The X-ray diffraction (XRD) analysis indicated that spheres consisted of a main magnesium-substituted strontium phosphate phase ((Sr0.86Mg0.14)3(PO4)2). The scanning electron microscopy (SEM) micrographs confirmed that spheres had hollow interiors (~350 nm size) and an average diameter of 850 nm. Spheres had a specific surface area of 30.5 m2/g, a mesoporous shell with an average pore size of 3.8 nm, and a pore volume of 0.14 cm3/g. These characteristics make them promising candidates for drug, cell and protein delivery. For the attachment of spheres to scaffolds’ surface, ceramic structures were immersed in an ethanol solution containing 0.1 g of hollow spheres and kept at 37 °C for 4 h. The scaffolds with incorporated spheres were bioactive after being immersed in simulated body fluid (SBF) for 7 days and spheres were still adhered to their surface after 14 days.  相似文献   

10.
A novel microwave (MW) processing technique was used to produce biodegradable scaffolds for tissue engineering from different types of starch‐based polymers. Potato, sweet potato, corn starch, and nonisolated amaranth and quinoa starch were used to produce porous structures. Water and glycerol were used as plasticizers for the different types of starch. Characterization of the pore morphology of the scaffolds was carried out with scanning electron microscopy. Three‐dimensional structures with variable porosity and pore size distribution were obtained with the MW foaming technique. The amount of remaining water in the scaffolds and their corresponding densities showed important variations among the different types of starch. Compressive mechanical properties were assessed by indentation tests, and a strong dependence of the indentation stress on the average pore size was found. Studies in simulated body fluid were used to assess the in vitro bioactivity, degradability, and surface topology evolution in the scaffolds. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1332–1339, 2007  相似文献   

11.
Novel nanosized designed ceramic powders, cerium (Ce) doped bioglass (BG) with various doped Ce content, were synthesized by sol–gel method in order to be employed in the development of PCL fibrous scaffold for bone tissue engineering applications. Characterization techniques such as X-ray diffraction analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy were employed to evaluate the developed Ce doped BG powders. The results confirmed successful doping of Ce inside BG structure. 0, 1, 3, and 10 wt% Ce doped 58S BG were successfully encapsulated in the collagen microspheres by water-in-oil emulsion method and the average particle size and hydrodynamic diameter of microspheres were determined using scanning electron microscopy and dynamic light scattering analysis, respectively. Next, 0, 1, 3, and 10 wt% Ce doped 58S BG encapsulated collagen microspheres were loaded inside the Poly(ɛ-caprolactone) fibrous scaffold and their in vitro bioactivity and biocompatibility properties were evaluated. The results of soaking samples in the simulated body fluid showed that all Ce doped 58S BG encapsulated collagen microspheres loaded PCL fibrous scaffold have acceptable bioactivity and apatite formation ability over time. The biocompatibility evaluation of developed scaffolds showed high viability and proliferation of MG63 cells cultured on the surface of 3% Ce doped 58S BG encapsulated collagen microsphere loaded in the PCL fibrous scaffold and its high potential ability for bone tissue engineering applications. These results potentially open new aspects for scaffolds aimed at the regeneration of bone defects.  相似文献   

12.
《Ceramics International》2022,48(15):21378-21388
This report aimed to evaluate the mechanical behavior, bioactivity, and cytotoxicity of novel chitosan/akermanite-TiO2 (CS/AK/Ti) composite scaffolds fabricated using the 3D-printing method. The morphological and structural properties of these scaffolds were characterized by Fourier transform spectroscopy (FTIR) and scanning electron microscopy (SEM). The mechanical behavior was examined by measuring the compressive strength, while the bioactivity was estimated in the simulated body fluid (SBF), and also the cytotoxicity of the scaffolds was assessed by conducting cell culturing experiments in vitro. It was found that the mechanical properties were considerably affected by the amount of TiO2. The scaffolds had the possessed bone-like apatite forming ability, which indicated high bioactivity. Furthermore, L929 cells spread well on the surface, proliferated, and had good viability regarding the cell behaviors. The outcomes confirmed that the morphological, biological, and mechanical properties of developed 3D-composite scaffolds nearly mimicked the features of natural bone tissue. In summary, these findings showed that the 3D-printed scaffolds with an interconnected pore structure and improved mechanical properties were a potential candidate for bone tissue applications.  相似文献   

13.
《Ceramics International》2021,47(20):28924-28931
In this study, hydroxyapatite (HAp) scaffolds with the pore size of 400, 500, and 600 μm were prepared by stereolithographic 3D printing (SL-3DP). The effects of pore size on mechanical and biological properties of the HAp scaffolds were investigated. Firstly, the macro- and microstructure of the HAp scaffolds were observed. Then, the compressive strength of the HAp scaffolds were tested. Finally, the biological properties of the HAp scaffolds were further characterized in vitro by the synthetic body fluid (SBF) solution immersion testing, as well as by using the cell proliferation and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. From this study, it was found that the HAp scaffold with a pore size of 600 μm had the most promising application prospect.  相似文献   

14.
《Ceramics International》2023,49(10):15568-15580
Porous bioceramic scaffolds are the preferred option for substituting spongy bone. Therefore, this study evaluates the use of carbonate associated with apatite rocks at Hamadat mines (referred to as calcite) as a source of low-cost bioactive material useful for biomedical applications. In this study, the depositional environment and mineralogical, and petrographic behavior of such depositions were studied. Furthermore, the possibility of producing highly porous, low-cost bioceramic scaffolds using the freeze-drying technique was demonstrated. The bioactivity of the produced scaffolds was enhanced by adding different ratios of wollastonite (25, 50 and 75 wt %) to the scaffold’s batches. However, the scaffolds were coated with ZnCl2 to enhance their antimicrobial susceptibility. The physical and mechanical properties as well as the phase composition and microstructure of the prepared scaffolds were investigated. The X-ray diffraction results revealed the formation of pure phase of α-wollastonite after 3 h of sintering at 1200 °C. To estimate the scaffolds’ biodegradability, the pH and the weight change were measured. The results were confirmed using the inductively coupled plasma measurements for the scaffolds deposited in a simulated body fluid (SBF) solution for 28 days. Results showed that the scaffolds had excellent bioactivity, which was demonstrated by the appearance of apatite particles on their surface after being immersed in the SBF. The antimicrobial activity test revealed that Zn2+, NPs and CaSiO3 had positive effects due to their oxidative stress process. Zn2+, Ca2+, and Si4+ cations can be adsorbed on bacterial surface membranes, interacting with the respiratory microbial enzymes, inhibiting their actions, and damaging the cell, thereby causing the bacterial cell decomposition.  相似文献   

15.
Since it was introduced at the end of the ‘60s, the 45S5 Bioglass® has played a fundamental role among the materials for orthopedic applications because of its ability to build a stable bond with the surrounding bone. The recent development of bone tissue engineering has led the interest of many scientists in the design of Bioglass®-based scaffolds, i.e. porous systems able to drive and foster the bone tissue regrowth. Among the available techniques to realize scaffolds, the polymer burning out method, which employs organic particles as pore generating agents in a ceramic matrix, combines versatility and low cost. In spite of the advantages of the polymer burning out method, this technique has been rarely applied to 45S5 Bioglass® and a systematic feasibility study has not been carried out on this issue yet. In order to fill this gap, in the present contribution the polymer burning out method was employed to design macroporous scaffolds based on 45S5 Bioglass®. Different amounts of organic phase were used to obtain samples with different porosity. The samples were characterized from a microstructural point of view, in order to evaluate the pore morphology, dimension and degree of interconnectivity. Such findings proved that a proper setting of the processing parameters made it possible to achieve very high porosity values, among the best ones obtained in the literature with the same technique, together with an appreciable mechanical behaviour, according to compression tests. Finally, the scaffolds bioactivity was assessed by means of in vitro tests in a simulated body fluid (SBF) solution. Moreover, in the view of a potential application for bone tissue engineering, a preliminary biological evaluation of the obtained scaffolds to sustain cell proliferation was carried out.  相似文献   

16.
《Ceramics International》2015,41(4):5894-5902
The biodegradable ceramic scaffolds with desirable pore size, porosity and mechanical properties play a crucial role in bone tissue engineering and bone transplantation. A novel porous β-dicalcium silicate (β-Ca2SiO4) ceramic scaffold was prepared by sintering the green body consisting of CaCO3 and SiO2 at 1300 °C, which generated interconnected pore network with proper pore size of about 300 μm and high compressive strength (28.13±5.37–10.36±0.83 MPa) following the porosity from 53.54±5.37% to 71.44±0.83%. Porous β-Ca2SiO4 ceramic scaffolds displayed a good biocompatibility, since human osteoblast-like MG-63 cells and goat bone mesenchymal stem cells (BMSCs) proliferated continuously on the scaffolds after 7 d culture. The porous β-Ca2SiO4 ceramic scaffolds revealed well apatite-forming ability when incubated in the simulated body fluid (SBF). According to the histological test, the degradation of porous β-Ca2SiO4 ceramic scaffolds and the new bone tissue generation in vivo were observed following 9 weeks implantation in nude mice. These results suggested that the porous β-Ca2SiO4 ceramic scaffolds could be potentially applied in bone tissue engineering.  相似文献   

17.
Although alumina scaffolds with biodegradable polymer coating can overcome the limitations of conventional ceramic bone substitutes, the bioactivity potential of these scaffolds needs to be enhanced. In this study, the macroporous alumina scaffolds with the defined pore-channel interconnectivity were successfully prepared by the foam replication method. The average pore size of the scaffolds was in the range 200–900 μm with around 82% porosity. The average Young's modulus of alumina scaffolds was 2.8 GPa. Coating of nano-hydroxyapatite (nano-HA) in poly(ε-caprolactone fumarate) (PCLF) as a carrier on the surface of alumina scaffold was performed. The nano-HA powder was synthesized successfully by the sol–gel method. The crystallite and particle sizes of HA powders were in nano range and confirmed by the Scherrer equation from X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The PCLF was synthesized and characterized by fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). In order to make a chemical link between the alumina scaffolds and the coating, a silane coupling agent was used. The results showed that using of 1 g Methacryloxypropyl trimethoxysilane in 100 g solvent is sufficient for making a thin interface layer between the scaffold and the polymer. The coating process was performed by immersion of scaffolds in the solutions with different percents of nano-HA. The morphology and chemical structure of the coated scaffolds were investigated by SEM and FTIR. SEM images demonstrated that the scaffolds were constituted of interconnected and homogeneously distributed pores. Also, HA distribution and agglomerates on the surface of scaffolds were enhanced by increasing the nano-HA percent in the coating solutions.  相似文献   

18.
A completely organic solvent-free fabrication method is developed for tissue engineering scaffolds by gas foaming of immiscible polylactic acid (PLA) and sucrose blends, followed by water leaching. PLA scaffolds with above 90% porosity and 25–200 µm pore size were fabricated. The pore size and porosity was controlled with process parameters including extrusion temperature and foaming process parameters. Dynamic mechanical analysis showed that the extrusion temperature could be used to control the scaffold strength. Both unfoamed and foamed scaffolds were used to culture glioblastoma (GBM) cells M059 K. The results showed that the cells grew better in the foamed PLA scaffolds. The method presented in the paper is versatile and can be used to fabricate tissue engineering scaffolds without any residual organic solvents.  相似文献   

19.
This study aims to investigate interconnectivity and permeability of scCO2-foamed scaffolds and the influence of structural scaffold properties on cell distribution. Supercritical fluid technology was utilized to fabricated scaffolds from 37 kDa, 53 kDa and 109 kDa PLGA (85:15). Pore size, pore size distribution and porosity were quantified by MicroCT, and window sizes were measured using SEM. A novel interconnectivity algorithm allowed the quantification of scaffold interconnectivity in three space dimensions. To determine the permeability of porous materials direct perfusion experiments were performed, where a known flow rate was applied to measure the pressure differential across the scaffolds. The permeability was calculated using Darcy's law. Largest pore sizes, porosities, interconnectivities and permeabilities were obtained for scaffolds fabricated from 37 kDa PLGA. These scaffolds showed a heterogeneous pore structure and distribution, whereas homogeneous pore structure, smallest pore sizes, porosities, interconnectivities and permeabilities were observed for scaffolds fabricated from 109 kDa PLGA. The distribution of 3T3 fibroblasts through scCO2-foamed scaffolds was investigated by MicroCT and MTT staining. Cells were further visualized by fluorescent imaging. Uniform cell distribution was observed on scaffolds fabricated from 109 kDa PLGA and an average of 10% of the total scaffold volume was covered with cells that had adhered onto them.  相似文献   

20.
This work deals with the additive manufacturing and characterization of hydroxyapatite scaffolds mimicking the trabecular architecture of cancellous bone. A novel approach was proposed relying on stereolithographic technology, which builds foam-like ceramic scaffolds by using three-dimensional (3D) micro-tomographic reconstructions of polymeric sponges as virtual templates for the manufacturing process. The layer-by-layer fabrication process involves the selective polymerization of a photocurable resin in which hydroxyapatite particles are homogeneously dispersed. Irradiation is performed by a dynamic mask that projects blue light onto the slurry. After sintering, highly-porous hydroxyapatite scaffolds (total porosity ~0.80, pore size 100-800 µm) replicating the 3D open-cell architecture of the polymeric template as well as spongy bone were obtained. Intrinsic permeability of scaffolds was determined by measuring laminar airflow alternating pressure wave drops and was found to be within 0.75-1.74 × 10−9 m2, which is comparable to the range of human cancellous bone. Compressive tests were also carried out in order to determine the strength (~1.60 MPa), elastic modulus (~513 MPa) and Weibull modulus (m = 2.2) of the scaffolds. Overall, the fabrication strategy used to print hydroxyapatite scaffolds (tomographic imaging combined with digital mirror device [DMD]-based stereolithography) shows great promise for the development of porous bioceramics with bone-like architecture and mass transport properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号