首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homogenous distribution of whiskers in the ceramic matrix is difficult to be achieved. To solve this problem, B4C-SiCw powder mixtures were freeze dried from a slurry dispersed by cellulose nanofibrils (CellNF) in this work. Dense B4C ceramics reinforced with various amounts of SiCw up to 12 wt% were consolidated by spark plasma sintering (SPS) at 1800 °C for 10 min under 50 MPa. During this process, CellNF was converted into carbon nanostructures. As iron impurities exist in the starting B4C and SiCw powders, both thermodynamic calculations and microstructure observations suggest the dissolution and precipitation of SiCw in the liquids composed of Fe-Si-B-C occurred during sintering. Although not all the SiCw grains were kept in the final ceramics, B4C-9 wt% SiCw ceramics sintered at 1800 °C still exhibit excellent Vickers hardness (35.5 ± 0.8 GPa), flexural strength (560 ± 9 MPa) and fracture toughness (5.1 ± 0.2 MPa·m1/2), possibly contributed by the high-density stacking faults and twins in their SiC grains, no matter in whisker or particulate forms.  相似文献   

2.
The zirconia toughened alumina (ZTA) composites have been widely used as an engineering material in many application areas due to their remarkable mechanical properties. However, the fracture toughness of ZTA does not generally meet the requirements of aerospace, machinery and other fields. In this study, the SiC whiskers (SiCw) have been incorporated in the ZTA composites to improve the fracture toughness. The SiCw employed in this study mainly consist of the β phase, with a small fraction of the α phase. The effect of the SiCw content and sintering temperature on the microstructure and mechanical properties of the SiCw-ZTA (ZASw) composites has been systematically studied. The incorporation of SiCw is noted to reduce the density of the ZASw composites. On enhancing the SiCw content, the Vickers hardness and fracture toughness of the composites initially decrease, followed by an increase. However, the flexural strength of the composites increases with the SiCw content. At a SiCw content of 10.0 vol %, the strength, hardness and toughness are observed to reach the maximum values. On enhancing the sintering temperature, the strength and hardness of the composites are observed to remain nearly constant, while the toughness of the composites is increased.  相似文献   

3.
《Ceramics International》2022,48(9):12006-12013
B4C-based composites were synthesized by spark plasma sintering using B4C、Ti3SiC2、Si as starting materials. The effects of sintering temperature and second phase content on mechanical performance and microstructure of composites were studied. Full dense B4C-based composites were obtained at a low sintering temperature of 1800 °C. The B4C-based composite with 10 wt% (TiB2+SiC) shows excellent mechanical properties: the Vickers hardness, fracture toughness, and flexural strength are 33 GPa, 8 MPa m1/2, 569 MPa, respectively. High hardness and flexural strength were attributed to the high relative density and grain refinement, the high fracture toughness was owing to the crack deflection and uniform distribution of the second phase.  相似文献   

4.
cBN–TiN–TiB2 composites were fabricated by spark plasma sintering at 1773–1973 K using cubic boron nitride (cBN) and SiO2-coated cBN (cBN(SiO2)) powders. The effect of SiO2 coating, cBN content and sintering temperature on the phase composition, densification and mechanical properties of the composites was investigated. SiO2 coating on cBN powder retarded the phase transformation of cBN in the composites up to 1873 K and facilitated viscous sintering that promoted the densification of the composites. Sintering at 1873 K, without the SiO2 coating, caused the relative density and Vickers hardness of the composite to linearly decrease from 96.2% to 79.8% and from 25.3 to 4.4 GPa, respectively, whereas the cBN(SiO2)–TiN–TiB2 composites maintained high relative density (91.0–96.2%) and Vickers hardness (17.9–21.0 GPa) up to 50 vol% cBN. The cBN(SiO2)–TiN–TiB2 composites had high thermal conductivity (60 W m−1 K−1 at room temperature) comparable to the TiN–TiB2 binary composite.  相似文献   

5.
《Ceramics International》2020,46(7):9070-9078
In this study, the influence of adding 0, 10, 20, and 30 vol% SiCw on the microstructure and physical-mechanical properties (relative density (RD), flexural strength, and Vickers hardness) of TiC-3 wt% WCn was investigated. All designed samples were spark plasma sintered under the same conditions: sintering temperature of 1900 °C, external pressure of 40 MPa, and dwell time of 7 min. Microstructural evaluation and relative density calculation revealed that the additives were dispersed homogeneously in the TiC matrix. Based on the Archimedes principles, RD values of >100% were measured for the composite samples with 20 and 30 vol% SiCw, due to not accounting the formation of non-stoichiometric TiC and (Ti,W)C phases in the calculations. On the contrary, the lowest RD was related to the sample with 10 vol% SiCw. On the other hand, the most significant values of Vickers hardness (28.6 GPa) and flexural strength (694 MPa) were obtained for TiC-3 wt% WCn and TiC-3 wt% WCn-20 vol% SiCw composite samples, respectively.  相似文献   

6.
《Ceramics International》2023,49(13):21587-21601
SiCw-reinforced WC-10Ni3Al cemented carbide was prepared by microwave sintering method, and the effects of the sintering temperature and SiCw content on the microstructure and mechanical properties of WC-10Ni3Al cemented carbide were investigated; the promotion effect and strengthening mechanism of SiCw were then analysed. The experimental results showed that the relative density, hardness, flexural strength and fracture toughness of WC-10Ni3Al cemented carbide increased and then decreased with increasing SiCw addition and sintering temperature. When the sintering temperature was 1500 °C and the content of SiCw was 0.3 wt%, the sample reached the highest mechanical properties and had a relative density of 96.5%, hardness of 1570 HV, flexural strength of 1275 MPa and fracture toughness of 13.1 MPa mm1/2, which were 4.0%, 23.1%, 12.5% and 8.1% higher than those of the sample without SiCw, respectively. During microwave sintering of WC-Ni3Al, the addition of an appropriate SiCw content can increase the microwave absorption of the sample, and produce many micro-high-temperature regions within the sample, which can accelerate the generation of the Ni3Al liquid phase. This promotes liquid phase flow to fill pores and rearrange the WC grains, thereby improving density and mechanical properties of the sample. The strengthening mechanisms of SiCw on microwave sintered WC-Ni3Al consist of promoting densification enhancement, fine-grained strengthening, and solid solution strengthening of Ni3Al by Si atoms.  相似文献   

7.
In this study, the high-content SiCnw reinforced SiC ceramic matrix composites (SiCnw/SiC CMC) were successfully fabricated by hot pressing β-SiC and sintering additive (Al2O3-Y2O3) with boron nitride interphase modification SiCnw. The effects of sintering additive content and mass fraction (5–25 wt%) of SiCnw on the density, microstructure, and mechanical properties of the composites were investigated. The results showed that with the increase of sintering additives from 10 wt% to 12 wt%, the relative density of the SiCnw/SiC CMC increased from 97.3% to 98.9%, attributed to the generated Y3Al5O12 (YAG) liquid phase from the Al2O3-Y2O3 that promotes the rearrangement and migration of SiC grains. The comprehensive performance of the obtained composite with 15 wt% SiCnw possessed the optimal flexural strength and fracture toughness of 524 ± 30.24 MPa and 12.39 ± 0.49 MPa·m1/2, respectively. Besides, the fracture mode of the composites with 25 wt% SiCnw content revealed a pseudo-plastic fracture behavior. It concludes that the 25 wt% SiCnw/SiC CMC was toughened by the fiber pull-outs, debonding, bridging, and crack deflection that can consume plenty of fracture energy. The strategy of SiC nanowires worked as a main bearing phase for the fabrication of SiC/SiC CMC providing critical information for understanding the mechanical behavior of high toughness and high strength SiC nanoceramic matrix composites.  相似文献   

8.
Highly densified Al4SiC4 ceramics with a relative density of 96.1% were prepared by pressureless sintering using 2 wt% Y2O3 as additives. The densification mechanism, phase composition, microstructures and mechanical properties of Al4SiC4 ceramics were investigated. Y2O3 in-situ reacted with the oxygen impurities in Al4SiC4 powder to form a yttrium aluminate liquid phase during sintering, which promoted the densification and anisotropic grain growth. The final Al4SiC4 ceramics were composed of equiaxed grains and columnar grains, and presented a bimodal grain distribution. The mechanical properties of the pressureless sintered Al4SiC4 ceramics were better than those reported for hot pressed Al4SiC4, including a flexural strength of 369 ± 24 MPa, fracture toughness of 4.8 ± 0.1 MPa m1/2 and Vickers hardness of 11.3 ± 0.2 GPa. Pressureless sintering of Al4SiC4 ceramics is of great significance for the development and practical application of Al4SiC4 ceramic parts, especially with big size and complex shape.  相似文献   

9.
In this paper, synthesis of novel super hard and high performance composites of titanium silicon carbide–cubic boron nitride (Ti3SiC2–cBN) was evaluated at three different conditions: (a) high pressure synthesis at ~ 4.5 GPa, (b) hot pressing at ~ 35 MPa, and (c) sintering under ambient pressure (0.1 MPa) in a tube furnace. From the analysis of experimental results, the authors report that the novel Ti3SiC2–cBN composites can be successfully fabricated at 1050 °C under a pressure of ~ 4.5 GPa from the mixture of Ti3SiC2 powders and cBN powders. The subsequent analysis of the microstructure and hardness studies indicates that these composites are promising candidates for super hard materials.  相似文献   

10.
《Ceramics International》2023,49(1):392-402
Silicon carbide ceramic matrix composites are widely used in aerospace field due to their advantages of high temperature resistance, high strength and corrosion resistance. However, its application is greatly limited because of the difficulty in preparing complex shape structures by traditional machining methods. Here, a new strategy for preparing SiCw/SiC complex structure by combining direct ink writing with reaction bonding is proposed. A water-based slurry consisting of silicon carbide, carbon powder and silicon carbide whisker was developed. The influence laws of C content and SiCw content in slurry on sintering properties of direct-written samples were studied. The reaction bonding mechanism and whisker reinforcing and toughening mechanism were analyzed by means of microstructure and phase composition. The results show that the slurry exhibits shear thinning behavior with stress yield point, and its flow behavior and plasticity meet the requirements of direct writing. When the carbon content is 6.4 wt%, the maximum flexural strength is 239.3 MPa. When 15 wt% SiCw was added, the flexural strength of the composite reached 301.6 MPa, and when 20 wt% SiCw was added, the fracture toughness of the composite reached 4.02 MPa m1/2, which was increased by 26% and 18% compared with single-phase SiC, respectively. The reinforcing and toughening mechanisms of the whiskers mainly include whisker pullout, crack deflection and whisker bridging. After direct ink writing and reaction bonded, the whole process shows good near net forming ability. 3D printed SiCw/SiC composites have great application prospects in aerospace field.  相似文献   

11.
《Ceramics International》2023,49(16):26719-26725
The effect of MnO2 additives on the sintering behavior and mechanical properties of alumina-toughened zirconia (ATZ, with 10 vol% alumina) composites was investigated by incorporating different amounts of MnO2 (0, 0.5, 1.0, and 1.5 wt%) and sintering at various temperatures ranging from 1300 to 1450 °C. The addition of MnO2 up to 1.0 wt% improved the sintered density, hardness, flexural strength, and fracture toughness of the composite. However, the addition of 1.5 wt% MnO2 degraded the relative density, hardness, and flexural strength of the composite due to the transformation of the ZrO2 phase from tetragonal to monoclinic and grain coarsening. Optimal results were obtained with 1.0 wt% MnO2 and sintering at 1450 °C, which improved the mechanical properties (hardness: 13.5 GPa, flexural strength: 1.2 GPa, fracture toughness: 8.5 MPa m1/2) and lowered the sintering temperature compared to the conventional sintering temperature of ATZ composites (1550 °C). Thus, the ATZ composite doped with MnO2 is a promising material for structural engineering ceramics owing to its improved mechanical properties and lower sintering temperature.  相似文献   

12.
When synthesizing polycrystalline cubic boron nitride (PcBN) at normal pressure, cBN had a trend of hexagonal transformation, which reduces the hardness and strength of PcBN. The cBN-Ti-Al composite was prepared by spark plasma sintering with introducing Ti and Al to absorb hexagonal boron nitride (hBN) transformed from cBN. By the results of X-ray diffraction (XRD), Ti and Al reacted with BN and forming TiN, TiB2, and AlN, which combined cBN as the binder by chemical bonding. The mechanical properties of the prepared composite increased as the increment of sintering temperature. The threshold temperature for preparing composite without hBN phase was at 1400 °C. The composite with optimal mechanical properties was prepared at 1400 °C, and the relative density, the bending strength, hardness, and fracture toughness were 98.9 ± 0.1%, 390.7 ± 4.4 MPa, 14.1 ± 0.5 GPa, and 7.6 ± 0.1 MPa·m0.5, respectively.  相似文献   

13.
ZrB2-based ceramics with SiCw were produced by hot pressing at 1750 °C for 1 h from mixed powders after adding liquid polycarbosilane. The obtained ZrB2-SiCw composites had toughness up to 7.57 MPa m1/2, which was much higher than those for monolithic ZrB2, SiC particles reinforced ZrB2 composites, and other ZrB2–SiCw composites directly sintered at high temperatures. The added liquid polycarbosilane could reduce the sintering temperatures and restrict the reaction of matrix with whisker, which led to fewer damages to the whisker and high fracture toughness.  相似文献   

14.
《Ceramics International》2020,46(6):7403-7412
The impact of various volume percentages of TiB2 additive (0, 10, 20, and 30) on the microstructure, relative density (RD), Vickers hardness, flexural strength, and thermal conductivity of as-sintered TiC-10 vol% SiCw-based composite samples were scrutinized. All four samples were sintered using the SPS method under the following circumstances; sintering temperature of 1900 °C, dwell time of 7 min, and external pressure of 40 MPa. The best relative density of 98.73% was achieved for the sample with no TiB2 additive, indicating the negative effect of TiB2 additive on the RD and formation of porosity. The microstructural observations and XRD results confirmed the chemical interaction of TiO2 and B2O3 oxide layers and SiCw and in-situ formation of the TiSi brittle phase and TiC. The most significant values of flexural strength (511 MPa) and hardness (27.67 GPa) were related to TiC-10 vol% SiCw and TiC-10 vol% SiCw-30 vol% TiB2 samples, respectively. On the contrary, the specimens with 30 vol% and 10 vol% TiB2 as additive presented the poorest qualities of flexural strength (234 MPa) and Vickers hardness (22.12 GPa). Finally, the influence of the TiB2 content on the thermal conductivity was evaluated, indicating the positive impact of this secondary phase on this characteristic, so with adding 30 vol% TiB2 to TiC-10 vol% SiCw, a thermal conductivity of 30.7 W/m.K was obtained.  相似文献   

15.
《Ceramics International》2022,48(11):15364-15370
This study reports on the preparation and mechanical properties of a novel SiCnf/SiC composite. The single crystal SiC nanofiber(SiCnf) reinforced SiC ceramic matrix composites (CMC) were successfully fabricated by hot pressing the mixture of β-SiC powders, SiCnf and Al–B–C powder. The effects of SiCnf mass fraction as well as the hot-pressing temperature on the microstructure and mechanical properties of SiCnf/SiC CMC were systematically investigated. The results demonstrated that the 15 wt% SiCnf/SiC CMC obtained by hot pressing (HP) at 1850 °C with 30 MPa for 60 min possessed the maximum flexural strength and fracture toughness of 678.2 MPa and 8.33 MPa m1/2, respectively. The nanofibers pull out, nanofibers bridging and cracks deflection were found by scanning electron microscopy, which are believed can strengthen and toughen the SiCnf/SiC CMC via consuming plenty of the fracture energy. Besides, although the relative density of the prepared SiCnf/SiC CMC further increased with the sintering temperature rose to 1900 °C, the further coarsend composites grains results in the deterioration of the mechanical properties for the obtained composites compared to 1850 °C.  相似文献   

16.
《Ceramics International》2017,43(9):6786-6790
As-received and pre-coated SiC whiskers (SiCw)/SiC ceramics were prepared by phenolic resin molding and reaction sintering at 1650 °C. The influence of SiCw on the mechanical behaviors and morphology of the toughened reaction-bonded silicon carbide (RBSC) ceramics was evaluated. The fracture toughness of the composites reinforced with pre-coated SiCw reached a peak value of 5.6 MPa m1/2 at 15 wt% whiskers, which is higher than that of the RBSC with as-received SiCw (fracture toughness of 3.4 MPa m1/2). The surface of the whiskers was pre-coated with phenolic resin, which could form a SiC coating in situ after carbonization and reactive infiltration sintering. The coating not only protected the SiC whiskers from degradation but also provided moderate interfacial bonding, which is beneficial for whisker pull-out, whisker bridging and crack deflection.  相似文献   

17.
Fully dense boron carbide-silicon carbide composites were successfully produced by spark plasma sintering method at 1950 °C under 50 MPa applied pressure. The effect of dry and wet mixing methods on uniformity was observed. Density, elastic modulus, microstructure, Vickers hardness and fracture toughness were evaluated. The results showed that dry mixing did not provide uniformity on composites properties. On the other hand wet mixing provided uniformity in microstructure and consistency in material properties. The hardness of the sample containing 50 wt% B4C was measured to be 30.34 GPa hardness value was found at 50 wt% B4C content sample. The increase in the B4C content of the composites decreased the Young's modulus, shear modulus, bulk modulus and fracture toughness. The highest values were found at 10 wt% B4C sample which were 415 GPa (E), 177 GPa (G), 209 GPa (K), and 2.89 MPa m1/2 fracture toughness (KIc).  相似文献   

18.
The hot pressing process of monolithic Al2O3 and Al2O3-SiC composites with 0-25 wt% of submicrometer silicon carbide was done in this paper. The presence of SiC particles prohibited the grain growth of the Al2O3 matrix during sintering at the temperatures of 1450°C and 1550°C for 1 h and under the pressure of 30 MPa in vacuum. The effect of SiC reinforcement on the mechanical properties of composite specimens like fracture toughness, flexural strength, and hardness was discussed. The results showed that the maximum values of fracture toughness (5.9 ± 0.5 MPa.m1/2) and hardness (20.8 ± 0.4 GPa) were obtained for the Al2O3-5 wt% SiC composite specimens. The significant improvement in fracture toughness of composite specimens in comparison with the monolithic alumina (3.1 ± 0.4 MPa.m1/2) could be attributed to crack deflection as one of the toughening mechanisms with regard to the presence of SiC particles. In addition, the flexural strength was improved by increasing SiC value up to 25 wt% and reached 395 ± 1.4 MPa. The scanning electron microscopy (SEM) observations verified that the increasing of flexural strength was related to the fine-grained microstructure.  相似文献   

19.
To improve the reliability, especially the toughness, of the reaction bonded silicon carbide (RBSC) ceramics, silicon carbide whiskers coated with pyrolytic carbon layer (PyC-SiCw) by chemical vapor deposition (CVD) were introduced into the RBSC ceramics to fabricate the SiCw/RBSC composites in this study. The microstructures and properties of the PyC-SiCw/RBSC composites under different mass fraction of nano carbon black and PyC-SiCw were investigated methodically. As a result, a bending strength of 550 MPa was achieved for the composites with 25 wt% nano carbon black, and the residual silicon decreased to 11.01 vol% from 26.58 vol% compared with the composite of 15 vol% nano carbon black. The fracture toughness of the composites reinforced with 10 wt% PyC-SiCw, reached a high value of 5.28 MPa m1/2, which increased by 39% compared to the RBSC composites with 10 wt% SiCw. The residual Si in the composites deceased below to 7 vol%, resulting from the combined actively reaction of nano carbon black and PyC with more Si. SEM and TEM results illustrated that the SiCw were protected by PyC coating. A thin SiC layer formed of outer surface of whiskers can provide a suitable whisker-matrix interface, which is in favor of crack deflection, SiCw bridging and pullout to improve the bending strength and toughness of the SiCw/RBSC composites.  相似文献   

20.
《Ceramics International》2020,46(11):18813-18825
This investigation intended to assess the influence of SiC morphology on the sinterability and physical-mechanical features of TiB2-SiC composites. For this aim, different volume percentages of SiC particles and SiC whiskers were introduced to TiB2 samples hot-pressed at 1950 °C for 2 h under an external pressure of 25 MPa. The characterization of as-sintered specimens was carried out using X-ray diffraction, optical microscopy, and scanning electron microscopy. The relative density studies revealed that SiCw had a more significant impact on the sinterability of TiB2-based composites. The XRD investigation confirmed the production of an in-situ TiC phase during the hot-pressing; however, some peaks related to the graphitized carbon also appeared in the patterns of SiCw-doped ceramics. The addition of 25 vol% SiCp halved the average grain size of TiB2 while introducing the same content of SiCw decreased this value by just around 20%. Finally, the highest Vickers hardness and fracture toughness were obtained for the sample reinforced with 25 vol% SiCw, standing at 29.3 GPa and 6.1 MPa m1/2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号