首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Functional properties, antioxidant, and angiotensin-I converting enzyme (ACE) inhibitory activities of egg white protein hydrolysate (EWPH) prepared with trypsin at different degree of hydrolysis (DH) were investigated. The DPPH radical scavenging activity, reducing power, lipid peroxidation inhibitory activity, and ACE inhibitory activity increased with DH at first and then decreased gradually. Hydrolysates with 12.4% DH had the highest antioxidant and ACE inhibitory activities. As DH increased, the solubility of EWPH increased while the emulsifying and foaming properties decreased. The functional properties of EWPH were also controlled by pH. Ultrafiltration of the hydrolysate with 12.4% DH revealed that the fractions of molecular weight lower than 3 kDa exhibited the highest antioxidant and ACE inhibitory activities. The results indicated that EWPH with different DH have different bioactive and functional properties and EWPH by controlled hydrolysis may be useful ingredients in food and nutraceutical applications with potential bioactive properties.  相似文献   

2.
Functional properties and antioxidative activity of a protein hydrolysate prepared from toothed ponyfish (Gazza minuta) muscle, using viscera extract from hybrid catfish (Clarias macrocephalus × Clarias gariepinus), with a degree of hydrolysis (DH) of 70%, were investigated. The protein hydrolysate had a good solubility. It was soluble over a wide pH range (3–9), in which more than 77% solubility was obtained. The emulsifying activity index of the protein hydrolysate decreased with increasing concentration (P < 0.05). Conversely, the foaming abilities increased as the hydrolysate concentrations increased (P < 0.05). Protein hydrolysate exhibited the increases in 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH), 2,2‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulphonic acid) (ABTS) radical scavenging activities, ferric reducing power (FRAP) and metal chelating activity as hydrolysate concentration increased (P < 0.05). ABTS radical scavenging activity of protein hydrolysate was stable when heated at 100 °C for 180 min and subjected to a wide pH range (1–11). Therefore, protein hydrolysate from the muscle of toothed ponyfish produced by viscera extract from hybrid catfish can be used as a promising source of functional peptides with antioxidant properties.  相似文献   

3.
In this study, the effect of ultrasonic pretreatment on the antioxidant activity of porcine liver protein hydrolysates (PLPHs) was investigated. The results showed that the degree of hydrolysis (DH) and peptide contents of the PLPHs increased as the time of ultrasonication increased. The hydrolysate pretreated with ultrasonication for 60 s exhibited the highest DH and peptide contents. The hydrolysate pretreated with ultrasonication for 45 s exhibited the highest ferrous ion chelating ability and reducing power. The hydrolysate pretreated with ultrasonication for 30 s exhibited the highest 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radical scavenging activity and the higher inhibitory activity in the linoleic acid autoxidation system. The molecular weight of peptides in the hydrolysates was less than 6.2 kDa. The results clearly demonstrated that ultrasonic pretreatment enhances the antioxidant activities of the PLPHs in a short period of time (15–30 s).  相似文献   

4.
Functional properties and antioxidant activities of protein hydrolysates prepared from ornate threadfin bream (Nemipterus hexodon) muscle, using skipjack tuna pepsin, with different degrees of hydrolysis (DH: 10%, 20% and 30%), were evaluated. Emulsifying and foaming properties of hydrolysates were governed by their DH and concentrations used. Hydrolysates with 20% DH had the highest scavenging activities for ABTS and DPPH radicals. However, chelating activity of hydrolysates for ferrous ion increased as DH increased. Size exclusion chromatography of the hydrolysate with 20% DH using Sephadex G-25 revealed that antioxidative peptides with molecular weight of approximately 1.3 kDa exhibited the highest ABTS radical-scavenging activity. In vitro simulated gastrointestinal digestion indicated that ABTS radical-scavenging activity of the antioxidative peptides was not affected by pepsin hydrolysis, whilst further digestion by pancreatin enhanced the activity. Therefore, protein hydrolysate from the muscle of ornate threadfin bream produced by skipjack tuna pepsin can be used as a promising source of functional peptides with antioxidant properties.  相似文献   

5.
Alcalase was used in the present study to carry out an enzymatic hydrolysis of soybean protein isolate and a plastein reaction of the prepared hydrolysate in vitro, aiming to investigate the influence of the plastein reaction on the antioxidant properties of the modified hydrolysate. Soybean protein hydrolysate was prepared in a degree of hydrolysis of 14.0%, exhibited a scavenging activity of 43.6% on ABTS radical in vitro, and thus was used as the substrate of the plastein reaction to prepare the plastein-reaction-stressed hydrolysate. Response surface methodology was applied to select suitable reaction conditions as follows: enzyme addition level 1037 U/g peptides, substrate concentration 29.7% (w/v), reaction temperature 20.3°C. The stressed hydrolysate showed the highest scavenging activity on ABTS radical (about 47.9%) or maximal reaction extent when reaction time was 6 h. Three stressed hydrolysates with different reaction extents were prepared and evaluated for other antioxidant activities. Compared to the original hydrolysate, the stressed hydrolysate with lower reaction extent exhibited a similar (P > 0.05) scavenging activity on DPPH (or superoxide) radical and reducing power, but a significant higher activity (P < 0.05) on hydroxyl radical. The stressed hydrolysate with the highest reaction extent behaved as these investigated antioxidant properties were significantly higher (P < 0.05) than the original hydrolysate except for scavenging activity on DPPH radical. The results of the present study highlight that the alcalase-catalyzed plastein reaction appears to be capable of improving antioxidant properties of soybean protein hydrolysate.  相似文献   

6.
王璐莎  陈玉连  黄明  周光宏 《食品科学》2015,36(17):146-151
为了解酶解时间、蛋白酶种类对鸭肉蛋白酶解产物抗氧化特性的影响,分别用复合蛋白酶、风味蛋白酶和胰酶对鸭肉进行单酶酶解和双酶分步酶解(胰酶+复合蛋白酶、胰酶+风味蛋白酶),制备不同时间段的酶解产物,并对其自由基清除能力(1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基、羟自由基(hydroxyl radical,·OH)和超氧阴离子自由基(superoxide radical,O2-·))和总还原力进行分析。结果表明:各鸭肉蛋白酶解产物的DPPH自由基清除率随着酶解时间的延长而增加,但·OH和O2-·清除率及总还原力随着酶解时间的延长先增加后降低(P<0.05)。在5 种鸭肉蛋白酶解产物中,复合蛋白酶酶解物表现出最强的DPPH自由基清除能力(75.70±1.54)%、·OH清除能力(59.41±1.24)%和O2-·清除能力(98.50±4.51)%,但用双酶分步酶解得到的酶解产物表现出最强的总还原力(0.330±0.017)。因此鸭肉蛋白酶解产物的抗氧化特性受酶解时间和蛋白酶种类的影响,复合蛋白酶是制备鸭肉蛋白源抗氧化肽的最适蛋白酶。  相似文献   

7.
以酸枣仁为原料,采用碱提酸沉法对酸枣仁蛋白进行提取,用三种不同蛋白酶(碱性蛋白酶、中性蛋白酶和木瓜蛋白酶)对酸枣仁蛋白进行酶解,得到三种酶解物,研究不同酸枣仁蛋白酶解物的功能特性和抗氧化活性.结果表明,与酸枣仁蛋白相比,不同酸枣仁蛋白酶解物的溶解性、持油性、起泡性及其稳定性、乳化性及其稳定性均具有不同程度地提高,其中,...  相似文献   

8.
Antioxidative and functional properties of protein hydrolysate from defatted skipjack (Katsuwonous pelamis) roe, hydrolysed by Alcalase 2.4 L (RPH) with different degrees of hydrolysis (DH) at various concentrations were examined. As DH increased, the reduction of DPPH, ABTS radicals scavenging activities and reducing power were noticeable (p < 0.05). The increases in metal chelating activity and superoxide scavenging activity were attained with increasing DH (p < 0.05). However, chelating activity gradually decreased at DH above 30%. All activities except superoxide anion radical scavenging activity increased as the concentration of hydrolysate increased (p < 0.05). Hydrolysis using Alcalase could increase protein solubility to above 80% over a wide pH range (2–10). The highest emulsion ability index (EAI) and foam stability (FS) of hydrolysates were observed at low DH (5%) (p < 0.05). Concentrations of hydrolysates determined interfacial properties differently, depending on DH. The molecular weight distribution of RPH with 5%DH (RPH5) was determined using Sephadex G-75 column. Two major peaks with the molecular weight of 57.8 and 5.5 kDa were obtained. Fraction with MW of 5.5 had the strongest metal chelating activity and ABTS radical scavenging activity. The results reveal that protein hydrolysates from defatted skipjack roe could be used as food additives possessing both antioxidant activity and functional properties.  相似文献   

9.
Loach (Misgurnus anguillicaudatus) proteins were hydrolysed by papain and Protamex, the antioxidant activity of loach protein hydrolysates (LPH) was investigated. The results demonstrated that extensive hydrolysis by papain and Protamex led to the browning of the hydrolysates. When the degree of hydrolysis (DH) was 23%, hydrolysates prepared by papain (HA) exhibited the strongest antioxidant activity. The maximum values of the hydroxyl, 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activities and the reducing power were 56.1%, 95.5%, 2.80 mM and 1.46, respectively. The hydrolysates prepared by Protamex (HB) showed the strongest hydroxyl radical scavenging activity (55.0%) at DH 28%, DPPH radical scavenging activity (92.2%) and ABTS radical scavenging activity (2.81 mM) at DH 23%, and the reducing power (1.17) at DH 33%. At the same DH value, there were significant (p < 0.05) differences between HA and HB. Several antioxidant amino acid residues, especially Trp and His, contributed significantly to the antioxidant activity of the hydrolysates. An increase of peptides with molecular weight below 500 Da was observed as the DH increased for all LPH. The above results indicated that DH and protease greatly influenced the molecular weight and amino acid residue composition of LPH, and further influenced the antioxidant activity.Industrial relevanceLoach has long been employed as a traditional Chinese medicine for the treatment of many kinds of diseases. From our previous work, loach was determined to be a good source of protein (accounts for approximately 17% (w/w) of the body weight). In this work, loach proteins were hydrolyzed by papain and Protamex to specific extent. The effect of DH on the antioxidant activities of hydrolysates was investigated. The results indicated that loach protein hydrolysates were potent antioxidants which were significantly affected by DH. This research is helpful for extensive development of loach product.  相似文献   

10.
挤压膨化大豆在生物解离过程中,通过酶解(碱性蛋白酶、风味蛋白酶)产生的大豆蛋白酶解物(soybean protein hydrolysate,SPH)有良好的抗氧化活性,因此,需要探索模拟胃肠道(gastrointestinal,GI)消化对蛋白酶解物抗氧化活性的影响。分别以蛋白酶(碱性蛋白酶、风味蛋白酶)酶解得到的SPH和经过模拟GI消化后的产物作为研究对象,采用水解度、氨基酸组成、分子质量分布、氧化自由基吸收能力(oxidative radical absorption capacity,ORAC)、1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基清除能力及2,2’-联氨-双(3-乙基苯并噻唑啉-6-磺酸)(2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt,ABTS)阳离子自由基清除能力对样品抗氧化活性进行分析。结果显示:相对于风味蛋白酶酶解,采用碱性蛋白酶进行酶解时抗氧化活性更高;但是经过模拟GI消化后,风味蛋白酶酶解得到的SPH抗氧化活性更高,ORAC为69.15 μmol/mg、DPPH自由基清除能力为27.29%、ABTS阳离子自由基清除能力为56.21%,肽的相对含量更高,为75.86%,并且肽中具有抗氧化活性的氨基酸含量更高,分子质量小于1 kDa的肽相对含量最高,为17.35%。  相似文献   

11.
Shrimp processing byproducts (SPB) was digested by 6 proteases (trypsin, pepsin, neutrase, Protamex, Flavourzyme, and Alcalase) to produce antioxidative peptides. Both degree of hydrolysis (DH) and DPPH radical scavenging activity (DSA) of the Alcalase hydrolysate were the highest of all. The effect of defatting on DH and DSA of the Alcalase hydrolysate was significant. The DH decreased while the DSA increased after defatting of the byproducts. The antioxidative activity of Alcalase hydrolysate was also investigated using several in vitro assays, including DPPH, ABTS radical scavenging assays (ASA), reducing power assay, and chelating activity. The antioxidative activity of the hydrolysate was obviously concentration dependent. The SPB Alcalase hydrolysate exhibited notable DSA and ASA with the IC50 values of 500 and 7.4 μg/mL, respectively. And the hydrolysate showed 38.9% chelating activity at 120 μg/mL level. The SPB Alcalase hydrolysate was a potential source of natural antioxidants.  相似文献   

12.
This work investigated the antioxidant activities of dromedary colostrum proteins before and after hydrolysis by pepsin, trypsin, α‐chymotrypsin, pancreatin and papain. The enzymatic hydrolysis affected the degrees of hydrolysis, electrophoretic profiles, molecular weight distribution and hydrophobic/hydrophilic properties of the generated peptides. The antioxidant activities were evaluated using four antioxidant assays, including 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) and 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) radical‐scavenging activities, ferric reducing power and ferrous ion chelating activity. Interestingly, the antioxidant activities of dromedary colostrum proteins were enhanced after enzymatic hydrolysis. The highest antioxidant potential was obtained by pancreatic hydrolysates (P ≤ 0.05). These results suggest that dromedary colostrum protein hydrolysates are an important source of natural antioxidant peptides.  相似文献   

13.
Different pretreatments of mince from brownstripe red snapper (Lutjanus vitta) including 1) washing; 2) membrane separation; 3) washing followed by membrane separation and 4) membrane separation followed by washing were conducted prior to hydrolysis. Among the resulting minces, that subjected to membrane separation with subsequent washing (MS/W) contained the lowest remaining myoglobin content, phospholipid content, heme iron and non-heme iron contents (p < 0.05) and showed the lowest TBARS values throughout 9 days of storage at 4 °C in the presence and absence of 0.15 mol L−1 cupric acetate (p < 0.05). When hydrolysates from 1) mince, 2) MS/W and 3) protein isolate from MS/W (PI) with different degree of hydrolysis (DH) (20, 30 and 40%) were prepared using proteases from pyloric caeca of brownstripe red snapper, antioxidative activities determined by DPPH, ABTS radical scavenging activities, ferric reducing antioxidant power and metal chelating activity varied with hydrolysates and DH. Antioxidative activities increased with increasing DH up to 40% (p < 0.05). At all DH tested, hydrolysate prepared from MS/W exhibited the highest antioxidative activities determined by all assays, compared to those from mince and PI (p < 0.05). Hydrolysate from MS/W with 40% DH had the molecular weight lower than 6.5 kDa as determined by SDS-PAGE. In liposome oxidation system, the addition of hydrolysate from MS/W resulted in the lower TBARS, compared with the control throughout the incubation period of 48 h at room temperature (25-28 °C). Therefore, fish mince with membrane separation followed by washing was the most appropriate source for production of hydrolysate possessing antioxidative activity with the lowered amount of lipids and pro-oxidants.  相似文献   

14.
Ultrasound was incorporated to processing of fish protein hydrolysate to facilitate homogenate pretreatment and enzymatic hydrolysis of tilapia (Oreochromis niloticus) muscle protein. Their effects on Flavourzyme hydrolysis and biological activities of the tilapia hydrolysate were examined. The ultrasound‐assisted hydrolysis caused reduction in degree of hydrolysis ranging from 23% to 35% relative to that of the conventional process. The 70 W ultrasound‐assisted hydrolysis process increased DPPH radical‐scavenging activity and reducing power of tilapia hydrolysate prepared from the non‐pretreatment homogenate by 33% and 45%, respectively. All hydrolysates have no cytotoxicity on RAW264.7 cell lines at the maximum concentration of 20 mg protein mL?1. The 70 W ultrasound pretreatment at 30 and 45 min combined with conventional hydrolysis is the suitable condition for producing tilapia hydrolysate with nitric oxide inhibitory and antioxidative activities on RAW264.7 cell lines, respectively. As a result, ultrasound could be applied to enzymatic protein hydrolysis either as pretreatment or during the hydrolysis.  相似文献   

15.
Bioactive peptides from protein hydrolysate of defatted skipjack (Katsuwonus pelamis) roe with 5% degree of hydrolysis (DH) prepared by Alcalase digestion were isolated and characterised. Two active fractions with ABTS radical scavenging activity (973.01–1497.53 μmol TE/mg sample) and chelating activity (0.05–0.07 μmol EE/mg sample) from consecutive purification steps including ultrafiltration, cation exchange column chromatography and reverse phase high performance liquid chromatography (RP-HPLC), were subjected to analysis of amino acid sequence by LC–MS/MS. Seven dominant peptides with 6–11 amino acid residues were identified as DWMKGQ, MLVFAV, MCYPAST, FVSACSVAG, LADGVAAPA, YVNDAATLLPR and DLDLRKDLYAN. These peptides were synthesised and analysed for ACE-inhibitory activity and antioxidative activities. MLVFAV exhibited the highest ACE inhibitory activity (IC50 = 3.07 μM) (p < 0.05) with no antioxidative property, whilst DLDLRKDLYAN showed the highest metal chelating activity, ABTS radical and singlet oxygen scavenging activities. Therefore, peptides prepared from skipjack roe could be further employed as a functional food ingredient.  相似文献   

16.
以玉米谷蛋白为原料,利用复合蛋白酶对其进行限制水解,探讨不同水解时间所获得的谷蛋白酶解物的分子量分布和抗氧化活性。结果表明:不同水解时间获得的酶解物分子量分布差异较大。水解时间为120min的酶解物中,分子量分布为6 511.51~307.32Da的肽段占94.36%,此时获得的酶解物的抗氧化活性最高,其对DPPH自由基、O-2·、·OH的清除率分别为58.86%,82.64%,37.21%;还原力为0.236;与亚铁离子的螯合能力为29.92%。  相似文献   

17.
目的:优化葛根蛋白酶解工艺并研究其抗氧化特性。方法:以DPPH自由基清除能力、水解度(DH)为评价指标,结合SDS-PAGE电泳结果,筛选最佳水解蛋白酶;在单因素实验基础上,利用Box-Behnken响应面法优化葛根蛋白酶解工艺,并对最佳葛根蛋白酶解物进行抗氧化特性研究。结果:葛根蛋白酶解最佳工艺条件为:酶解温度55 ℃、pH9、酶底比2%,该条件下制备的葛根蛋白酶解物清除DPPH自由基、ABTS+自由基、OH自由基的IC50值分别为0.15、0.38、1.41 mg/mL,还原能力为0.553。结论:该条件下制备的葛根蛋白酶解物具有较好的抗氧化特性。  相似文献   

18.
The effects of washing and membrane removal pretreatments on the antioxidant properties of grass carp protein hydrolysates prepared through in vitro digestion were investigated. Furthermore, antioxidant hydrolysate was fractionated using ultrafiltration membranes (10, 5, 3 and 1 kDa). Oxygen radical antioxidant capacity (ORAC), DPPH and ABTS‐scavenging activity in a gastrointestinal digest produced from pretreated minced grass carp was increased 1.74‐fold, 1.08‐fold and 1.72‐fold, respectively, compared to untreated minced carp. Compared to the alkaline protease hydrolysate, ORAC, ferric reducing antioxidant power, ABTS‐ and DPPH‐scavenging activity in a gastrointestinal digest prepared from pretreated minced carp were reduced by 11.5%, 60.9%, 16.3% and 78.4%, respectively. The ultrafiltration fraction (<1 kDa) displayed the highest antioxidant activity. The size of molecular weight and the amount of hydrophobic and aromatic residues in hydrolysates played an important role in antioxidant activity. Low‐molecular‐weight fish hydrolysates could serve as a potential source of functional ingredients for promoting health.  相似文献   

19.
以苦荞蛋白作为底物,采用碱性蛋白酶Alcalase 2.4 L、木瓜蛋白酶、胃蛋白酶、胰蛋白酶以及胃蛋白酶加胰蛋白酶模拟体内蛋白消化,制备苦荞麦蛋白水解物。采用DPPH及ABTS~+·法比较不同的蛋白水解物与水解前苦荞蛋白的体外抗氧化活性。结果表明:不同蛋白酶水解产物水解度由高到低的顺序为:碱性蛋白酶胃蛋白酶~胰蛋白酶胃蛋白酶木瓜蛋白酶胰蛋白酶,其中碱性蛋白酶水解苦荞蛋白水解度达29.95%。苦荞蛋白本身具有一定的抗氧化能力,其中DPPH清除率及ABTS~+·清除率最高分别达71.91%及11.25%,但均显著低于阳性对照Vc。随着水解程度的增加,苦荞蛋白水解产物抗氧化能力逐渐增强。其中,以碱性蛋白酶酶解产物抗氧化活性最高,其DPPH清除率及ABTS~+·清除率最高分别为91.65%(0.5 mg/mL)及16.67%(1 mg/mL),均显著高于原苦荞蛋白。其中,碱性蛋白酶水解产物的DPPH自由基清除率在高浓度(0.5mg/mL)条件下,与阳性对照Vc持平。同时碱性蛋白酶酶解产物抗氧化性(DPPH清除率及ABTS~+·清除率)显著优于其他蛋白酶解产物。因此,苦荞麦蛋白采用碱性蛋白酶解制备苦荞水解产物可作为天然的抗氧化剂。  相似文献   

20.
This research focuses on green production of bioactive proteins and hydrolysates from Nitzschia. A comparison of antioxidant activities was established between protein extracts and hydrolysates from Nitzschia and two other well‐known microalgae, chlorella and spirulina. Protein hydrolysates from these microalgae were produced using Alcalase®, Flavourzyme® and Trypsin. The hydrolysis process enhanced the antioxidant activities in general, especially those obtained using Alcalase®. Nitzschia showed the highest (P < 0.05) total phenolic content/reducing capacity (2.4 ± 0.02 mg GAE/100 g) after 90 min of hydrolysis with Alcalase®. The ABTS [2,2′‐Azino‐bis(3‐ethylbenzothiazoline‐6‐sulphonic acid)] radical scavenging activity (66.77 ± 0.00%) was highest (P < 0.05) after 120 min of hydrolysis, but DPPH (2,2‐Diphenyl‐1‐picrylhydrazyl radical) was low (29.59 ± 0.02%). A correlation between ABTS activity and total phenolic contents was the highest (P < 0.05) for protein hydrolysates from all three organisms using Alcalase®, but superoxide anion radical scavenging activity was intermediate for Nitzschia. Therefore, Nitzschia protein hydrolysates have the potential to be used as antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号