首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Ca3Sc2Si3O12:Ce3+ (CSS:Ce) green phosphors used for white light‐emitting diodes (LEDs) are synthesized and codoped with Al3+ via a solid‐state reaction method. The crystal structure and vibrational modes are analyzed by X‐ray diffraction, Fourier transform infrared spectroscopy, and Raman scattering spectroscopy. The energy transfer behavior and optical performance are characterized by photoluminescence and excitation spectra, quantum efficiency, and time‐resolved photoluminescence. The incorporation of Al3+ into CSS:Ce can inhibit the formation of the impurity phases Sc2O3 and CeO2, improve crystallinity, and enhance the photoluminescence intensity as well as quantum efficiency. The substitution of Sc3+ with Al3+ increased the crystal field splitting of Ce3+ and resulted in the red shift of photoluminescence. The results show that Ca3Sc2?xAlxSi3O12:Ce3+ has high quantum efficiency, making it a promising green phosphor that can be collocated with a commercial 450 nm blue LED and a red phosphor for solid‐state lighting applications.  相似文献   

2.
《Ceramics International》2019,45(16):20316-20322
Tb3+ is a typical green emitting luminescence center in inorganic compounds. However, the absorption of Tb3+ is very weak in ultraviolet spectral region (from 240 to 400 nm). Ce3+ is often used as a sensitizer to transfer energy to Tb3+. In this paper, Ce3+ and Tb3+ were co-doped into a novel aluminates-borates LaAl2.03B4O10.54. Ce3+ can absorb UV light (from 240 to 340 nm) and transfer absorbed energy to co-doped Tb3+ effectively and bring bright green emission of Tb3+. The crystal structure and fluorescence spectra of phosphors, the efficiency of energy transfer between Ce3+ and Tb3+, decay dynamics, the thermal stability and internal quantum efficiency of luminescence have been investigated in detail. These results indicate that the color tunable LaAl2.03B4O10.54: Ce3+, Tb3+ phosphor is a potential green-emitting material. Especially, analysis about the relationship of the doping concentration of luminescence centers and thermal stability of luminescence points out a feasible way to enhance the thermal stability of luminescence in the future.  相似文献   

3.
《Ceramics International》2019,45(12):14928-14933
In this paper, GdFeO3 thin films with high orientation and heavily Ce3+ doping were deposited by radio frequency magnetron sputtering with a matching substrate. The effects of substrates and Ce3+ doping on the structure, magnetic and magneto-optical properties of thin films were investigated. As a result, Ce3+ doping can not only increase the saturation magnetization but also greatly enhance the magnetic circular dichroism signals of Ce:GdFeO3 thin films. Based on the density functional theory calculation, it can be found that the probability of electron transition between Ce3+ 4f and Fe3+ 3d and the difference in the absorption of right and left circularly polarized light increase, which results in the strong magneto-optical effect of Ce:GdFeO3/STO thin films.  相似文献   

4.
The microstructures and optical properties of Ce,Mg:Lu3Al5O12 scintillator ceramics are investigated with particular focus on the effect of postannealing in air from 1000 to 1450°C. The formation of Al2O3 clusters after annealing above 1300°C is evidenced by scanning electron microscopy. The presence of this secondary phase is tentatively explained by the occurrence of Ce and Mg evaporation, proved by inductive coupled plasma optical emission spectrometry measurements, followed by defect diffusion and clustering during high temperature annealing. Meanwhile, optical investigations including absorption, X-ray induced luminescence, light yield, scintillation decay, and thermoluminescence prove the positive role of post-annealing that leads to a brighter and faster scintillation emission. This behavior is associated to the removal of oxygen vacancies occurring during such treatments. In parallel, the partial conversion of Ce3+ ions into Ce4+ is also observed as a consequence of annealings and the role of Ce4+ ions in the scintillation process is discussed.  相似文献   

5.
The development of novel single-component white-emitting phosphors with high thermal stability is essential for improving the illumination quality of white light-emitting diodes. In this work, we synthesized a series of Ce3+, Tb3+, Mn2+ single- and multiple-doped Ca9La(PO4)7 (CLPO) phosphors with β-Ca3(PO4)2-type structure by the simple high-temperature solid-state reaction. The crystallization behavior, crystal structure, surface morphology, photoluminescence performance, decay lifetime and thermal stability were systematically investigated. The PL spectra and decay curves have evidenced the efficient energy transfer from Ce3+ to Tb3+ and from Ce3+ to Mn2+ in the CLPO host, and corresponding energy transfer efficiency reaches 41.8% and 54.1%, respectively. The energy transfer process of Ce3+→Tb3+ and Ce3+→Mn2+ can be deduced to the resonant type via dipole-dipole and dipole-quadrupole interaction mechanism, and corresponding critical distance were determined to be 12.23 and 14.4 Å, respectively. Based on the efficient energy transfer, the white light emission can be successfully achieved in the single-component CLPO:0.15Ce3+, 0.10Tb3+, 0.04Mn2+ phosphor, which owns CIE chromaticity coordinates of (0.3245, 0.3347), CCT of 5878 K, internal and external quantum efficiency of 84.51% and 69.32%. Especially, compared with the emission intensity at 25 °C, it still remains 98.5% at 150 °C and 92.0% at 300 °C. Based on these results, the single-component white light emission phosphor CLPO:0.15Ce3+, 0.10Tb3+, 0.04Mn2+ is a potential candidate for UV-converted white LEDs.  相似文献   

6.
《Ceramics International》2023,49(15):24922-24930
Although considerable research works have witnessed the important modulations of oxygen vacancies on the optical, electrical, and magnetic properties of SnO2 nanostructures, it is not easy to control oxygen vacancy defects in such systems.The difficulty stems from that oxygen vacancy is a kind of atomic defect, and its distribution is sensitive to process conditions and external factors, which makes direct characterization and purposeful control difficult. The purpose of this work on Ce-doped SnO2 nanocrystals is to investigate the tolerance of the host lattice to Ce ions, the population and evolution of Ce3+/Ce4+ ions, and the possibility to adjust oxygen vacancies by Ce3+ ions, and then focus on the influence of oxygen vacancy defects on the band gap and luminescence performance. As Ce doping concentration increases from 0 to 12 at.%, the doped system changes from Ce3+ dominated at low doping amount (≤3 at.%) to Ce3+/Ce4+ coexistence at medium doping concentration (3 at.% ∼ 9 at.%), to occurrence of CeO2 impurity phase at over doping (∼12 at.%). The optimum doping occurs at 6 at.%, which corresponds to the saturated critical point of Ce3+ content and the maximum oxygen vacancy concentration. Importantly, the oxygen vacancies in the current Ce-doped SnO2 nanocrystals is directly regulated by the Ce3+ ion concentration on the Sn sites, which plays an important role in the band gap tuning and visible light emission. With Ce concentration increasing from 0 to 12 at.%, the band gap monotonicity decreases from 3.36 eV to 3.12 eV, while the intensity of the oxygen vacancy luminescence band first increases and then decreases, with the turning point at 6 at.%. Both band gap narrowing effect and enhanced emission indicate that Ce-doped SnO2 should be a promising method to design and manufacture visible light responsive SnO2 based optoelectronic materials by manipulating oxygen vacancy defects.  相似文献   

7.
During pursuing high color rendering index for full-color-emitting phosphor, low quantum efficiency (QE) is usually accompanying. We intend to elevate the luminescence efficiency when realizing a solar-like spectra distribution, by constructing apatite structure oxynitride, inheriting high covalence and rigidity from oxynitride, and suitable multiple cation sites from oxyapatite compounds. Full-color-emitting apatite structure oxynitride phosphor (Mg,Y)5Si3(O,N)13:Ce3+,Mn2+ has been prepared, and the crystal sites’ occupancies of activators in this host were favorable for white emission. (Mg,Y)5Si3(O,N)13:Ce3+,Mn2+ phosphor shows whole visible light with emission wavelength ranging from 370 to 750 nm, matching the spectra of sunlight quite well. The fabricated white light-emitting diode lamp demonstrated the distinctive overall performance of QE and chromaticity properties (Ra and R9). Furthermore, correlated color temperature is tunable from cool nature to warm white. The obtained lamp possesses the feature of less blue light hazard and high saturation of red degree, compared with the commercial YAG-based lamp.  相似文献   

8.
Ce3+‐doped Gd3Fe5O12 (Ce:GIG) film has a good application prospect in the field of integrated optical device. In this article, Ce:GIG and Ce,Ga:GIG films were deposited onto the quartz glass substrate by using radio‐frequency magnetron sputtering technology. The crystal phase, surface morphology, magnetization, and magnetic circular dichroism properties of films were characterized by using the X‐ray powder diffraction, atomic force microscopy, vibrating sample magnetometer, and circular dichroism spectrometer. The results show that as‐prepared Ce,Ga:GIG films has a good quality and show an excellent magneto‐optical performance, and the doping of Ga3+ ion and the annealing process have significant effect on the magnetism and magneto‐optical performances. It is expected that Ce,Ga:GIG film with a moderate Ga3+‐doping content is a better candidate than Ce:GIG and Ce:YIG films for the next generation of integrated optical isolator and other magneto‐optical equipment.  相似文献   

9.
To enhance the display quality of light-emitting diodes (LEDs), it is of great significance to exploit green/yellow-emitting phosphors with narrow emission band, high quantum yield, and excellent color purity to satisfy the application. Herein, orthophosphate-based green/yellow-emitting Na3Tb(PO4)2:Ce3+/Eu2+ (NTPO:Ce3+/Eu2+) phosphors have been successfully synthesized by a facile solid-state reaction method. The absorption band of NTPO samples was extended to the near-ultraviolet region and the absorption efficiency was significantly improved owing to a highly efficient energy transfer from Ce3+/Eu2+ ion to Tb3+ ion in NTPO host certified by time-resolved PL spectra. Upon 300 nm excitation, the NTPO:Ce3+ is characterized by ultra-narrow-band green emission of Tb3+ with an absolute quantum yield of 94.5%. Unexpectedly, NTPO:Eu2+ emits bright yellow light with a color purity of 73% as a result of the blending of green light emission from Tb3+ and red light emission from Eu3+. The thermal stability has been improved by controlling the stoichiometric ratio of Na+. The prototype white LED used yellow-emitting NTPO:Eu2+ phosphor has higher color-rendering index (Ra = 83.5), lower correlated color temperature (CCT = 5206 K), and closer CIE color coordinates (0.338, 0.3187) to the standard white point at (0.333, 0.333) than that used green-emitting NTPO:Ce3+ phosphor, indicating the addition of the yellow light component improved the Ra of the trichromatic (RGB) materials.  相似文献   

10.
Sr2GdAlO5:Ce and Sr3AlO4F:Ce are isostructural phosphors in which the Ce3+ 4f-5d1 transition can be efficiently excited by a photon with energy lower than 3.1 eV. Herein, we analyze the crystal chemistry of the Ce3+ local coordination, compare the thermal quenching behavior and construct the electronic structure of Ce3+ in them. The Rietveld refinement on two occupancy models suggests that Gd3+ only occupies the 8h site in Sr2GdAlO5; this provides a hint on the preferred occupancy of dopant Ce3+ in this site. The large crystal filed splitting of Ce8h is mainly due to the fact that the 8h site is bonded to two oxygen with relatively short dSr/Gd-O and forms a quasi-square antiprism which experiences a large distortion. The Ce3+ 5d-4f luminescence in Sr3AlO4F is much more stable against thermal quenching than that in Sr2GdAlO5, as evidenced by the temperature-dependent luminescence intensity and luminescence decay studies. The energy of the O2−-Eu3+/2+ and O2−-Ce4+/3+ charge transfer as well as bandgap were estimated and the electronic structure of Ce3+ were constructed. A larger energy barrier ΔEdC between the Ce3+ 5d1 level and the conduction band bottom in Sr3AlO4F is seen from the Vacuum Referred Binding Energy (VRBE) diagrams which explains the higher thermal quenching temperature by thermal ionization model.  相似文献   

11.
High-energy physics community is looking for a hard, fast, and low-cost scintillation material, and Ce:Lu3Al5O12 (Ce:LuAG) ceramic is one of the competitive candidates. This work presents Ce,Ca:LuAG scintillation ceramics with good optical quality, and the influence of Ce and Ca concentrations on optical and scintillation properties was fully analyzed. At relatively low level of Ce concentration, the less Ca2+ content is needed to achieve a significant intensity increase in fast scintillation component while maintaining a relatively high light yield (LY). The introduction of only 0.1 at% Ca2+ could increase the LY0.5 μs/LY3.0 μs from 79.9% to 96.1% in Ce,Ca:LuAG ceramics of 0.1 at% Ce. First-principles investigations are further performed to reveal the tuning mechanisms of the scintillation properties of LuAG by Ce and Ca codoping. We show that the Fermi level shifts down with Ca codoping, which increases the Ce4+ content and decreases the depth of the electron traps (VO), resulting to a faster decay. Moreover, the formation preference of Ca-VO complexes over Ce-VO leads to the suppression of the non-radiative decay of Ce via VO. In summary, our study demonstrates the realization of the performance tuning of LuAG via Ce and Ca codoping.  相似文献   

12.
《Ceramics International》2023,49(15):24703-24711
Ce/Mn/Cr: Y3Al5O12 transparent ceramics with a pure garnet structure and a high color rendering index were prepared by a solid-state reaction method. Mn2+ and Cr3+ enhance the emission between 500 and 700 nm and expand the conventional Ce: YAG phosphors spectrum. The Ce3+ can work both, as activators and sensitizers, and the intense energy transfer from Ce3+ to Mn2+/Cr3+ is realized through the non-radiative and radiative processes. In the sample with the optimized doping concentration the high color rendering index (CRI) value of 75.3 can be achieved under a 450 nm laser diode excitation. The chromaticity coordinates can be tuned from (0.3125, 0.3232) to (0.2917,0.2851) by varying the doping concentration. With the increasing Mn2+/Cr3+ doping concentration, the lifetime of Ce3+, quantum efficiency and luminous efficiency are all gradually decreased. This work effectively offers a scheme for realizing the high color rendering performance of phosphor-converted transparent ceramics in white LEDs/LDs.  相似文献   

13.
A series of Ce3+ and Tb3+ singly- and co-doped NaBa4(AlB4O9)2Cl3 (NBAC) phosphors have been synthesized via high-temperature solid state route. The crystal structure, morphology, photoluminescent properties, thermal properties and energy transfer process between Ce3+ and Tb3+ were systematically investigated. The structure refinements indicated that the phosphors based on NBAC crystallized in P42nm polar space group in monoclinic phase. The emission color could be tuned from blue (0.1595, 0.0955) to green (0.2689, 0.4334) via changing the ratio of Ce3+/Tb3+. The energy transfer mechanism of Ce3+/Tb3+ was verified to be dipole–quadrupole interaction via the examination of decay times of Ce3+ based on Dexter's theory. The good thermal stability showed the intensities of Ce3+ at 150°C were about 66.9% and 64.88% in NBAC:0.09Ce3+ and NBAC:0.09Ce3+, 0.07Tb3+ of that at room temperature, and the emission intensities of Tb3+ remained 102.41% in NBAC:0.11Tb3+ and 95.22% in NBAC:0.09Ce3+, 0.07Tb3+ due to the nephelauxetic shielding effect and the highly asymmetric rigid framework structure of NBAC. The maximum external quantum efficiency (EQE) of Ce3+ in NBAC:0.09Ce3+, yTb3+ phosphors could reach 43.38% at y = 0.13. Overall, all the results obtained suggested that NBAC:Ce3+, Tb3+ could be a promising option for n-UV pumped phosphors.  相似文献   

14.
《应用陶瓷进展》2013,112(8):494-498
Abstract

Sr1?xCexMnO3 (SCM, 0·1≤x≤0·4) powders were synthesised by an ethylenediaminetetraacetic acid citrate complexing process, and their properties were investigated. The synthesised Sr1?xCexMnO3 powders showed a pure perovskite phase, whereas the composition with x?=?0·4 had second phases. The unit cell volumes increased with increasing Ce content because substituted Ce ions formed some Mn3+ ions, which have a larger ionic radius than Mn4+. The electrical conductivity improved with increasing Ce content up to x?=?0·3 (291 S cm?1 at 750°C), revealing a double exchange interaction. Although the electrical conductivity was increased by doping Ce ions, the polarisation resistance increased due to the increase in lattice distortion with doping Ce content. The substitution of Ce ions for Sr in SrMnO3 led to the formation of larger Mn3+ ions than Mn4+ ions and lattice distortion, which would affect the electrical and oxygen ion conductivity.  相似文献   

15.
Nonstoichiometric LuAG:Ce Ceramics ([Lu(1–x)Cex]3Al5O12, x = 0.005) with different excess of Lu3+ were designed on the basis of Lu2O3‐Al2O3 phase diagram and fabricated by a solid‐state reaction method. Without using any traditional sintering aids, pure phase and good optical performance were obtained in such a Lu‐rich LuAG:Ce ceramics. In addition, scintillation efficiency and light yield of 1% excess of Lu3+ ceramic sample were found 16 times and 1.82 times higher than that of commercial Bi4Ge3O12 (BGO) single crystals, respectively. Such values are comparable or even better than those in most of LuAG:Ce single crystals. However, antisite defects were also induced by excess of Lu doping, whose luminescence was found at 350–410 nm in Lu‐rich LuAG:Ce ceramics. The relationship of excess content of Lu and the microstructure, optical quality, and scintillation performance were clarified and discussed. Furthermore, by utilizing X‐ray absorption near edge spectroscopy technique, the charge state stability of cerium in Lu‐rich LuAG:Ce ceramics was examined. It appears that the excess of isovalence Lu3+ doping has a negligible effect on the cerium valence instability and creation of stable Ce4+ center.  相似文献   

16.
Compared with other fluorescent crystal phases, garnet has better structural stability in a glass matrix and renders precisely controllable emissions due to the abundant lattice control positions. In this work, we regulate the coordination field of Ce3+ ion based on the co-substitution method and achieve the spectra regulation in the yellow–green range. We used Ba2+–Si4+ cations to replace Y3+–Al3+ cations in Y3Al5O12 (YAG) matrix to obtain blue-shift of the emission peak from 552 to 539 nm. The centroid shift and crystal field splitting decrease with the decreasing covalency of the bond between the Ce3+ ion and the surrounding anions owing to the higher electronegativity of Si4+ ions than Al3+ ions. The corresponding fluorescent films were prepared by a low-temperature co-sintering process based on the as-made Ba2+–Si4+ co-substituted phosphor. X-ray powder diffractometer and scanning electron microscopy images showed that the fluorescence crystals were less eroded and evenly dispersed in the glass matrix. Spectral analysis showed that the garnet phase was protected by using lead-free borosilicate glass with a low melting point, and the quantum efficiency of phosphor-in-glass (PiG) retains 98% of the corresponding phosphor. By adjusting the ratio of garnet phosphor to commercial red nitride phosphors, a warm white fluorescence with a color rendering index of 80.3 and color temperature of 3899 K was obtained. The prepared warm white film has potential application value in the whole spectra field.  相似文献   

17.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   

18.
A new polycrystalline ceramic scintillator is reported for potential use in radiation detection and medical imaging applications. The goal was to develop cerium‐activated aluminum oxynitride (AlON:Ce3+) ceramics, which can be produced using ceramic processes in comparison to the high‐cost, low‐yield single‐crystal growth technique. A phase pure AlON:Ce3+ powder with cubic symmetry was successfully synthesized at high temperature under a reducing atmosphere to convert Ce4+ to Ce3+ in the solid solution. Two different activator concentrations (0.5 and 1.0 mol%) were explored. Fully dense and transparent AlON:Ce3+ ceramics were produced by a liquid‐phase‐assisted pressureless sintering. The crystal field splitting around the Ce3+ activator in the AlON was comparable to the splitting induced by Br? and the Cl? ligands, which produced an emission spectrum perfectly matching the maximum quantum efficiency range of the photomultiplier tube for radiation detection. Both optical excitation and radiation ionizations in AlON:Ce3+ were demonstrated. Challenges and mechanisms related to the radioluminescence efficiency are discussed.  相似文献   

19.
《Ceramics International》2022,48(13):18730-18738
A series of new negative temperature coefficient (NTC) thermal materials based on (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 (0.00 ≤ x ≤ 0.20) ceramics were synthesized by a solid-state method. X-ray diffraction, scanning electron microscope and X-ray photoelectron spectroscopy were used to demonstrate the crystal structure, morphology, and composition of the (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics, which were composed of solid solution based on the BaTiO3 phase. The average grain size of doped ceramic samples experienced the process of first decreasing and then increasing. The doping of Ce has reduced the sintering temperature. The temperature-dependent resistance analysis revealed that with the change of doping amount x, the thermal constant B300/1200 (1.21 × 104–1.13 × 104 K) and the activation energy Ea300/1200 (0.9777–1.0471eV) was initially increased to maximum values at x = 0.05, followed by the decreasing when x > 0.05. It has been established that the concentration of oxygen vacancies is affected by the transition between Ce4+ and Ce3+ provided by high levels of Ce doping. (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics exhibited excellent negative temperature characteristics in the range of 300–1200 °C. Moreover, the temperature resistance linearity was improved after samples were aged. Hence, the (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics were regarded as a promising material for high-temperature NTC thermistors in a wide temperature range.  相似文献   

20.
A series of phase-pure [(Gd0.6Lu0.4)0.99Ce0.01]3[Al1-z(Mg/Si)z]5O12 (z = 0-0.10) garnet phosphor powders were prepared via gel-combustion, which were then sintered into ceramics (up to 1550 °C) under atmospheric pressure. Dilatometry revealed that equimole of Mg2+/Si4+ substitution for Al3+ accelerates densification and lowers the activation energy for grain boundary diffusion in the intermediate stage of sintering (∼1150–1370 °C), which was assayed to be ∼353 kJ/mol for z = 0 and ∼289 kJ/mol for z = 0.10. The acceleration effects of Mg2+/Si4+ on sintering and grain growth were further demonstrated by the results of ramp and holding sintering. Firing at 1550 °C for 4 h also produced ∼99 % dense ceramics for the Mg2+/Si4+ codoped garnet powders. Through considering crystal splitting of the Ce3+ 5d energy level, photon-phonon coupling, and crystal structure/microstructure, the influences of Mg2+/Si4+ content and material form on Ce3+ luminescence, including intensity, external/internal quantum efficiencies, emission wavelength, CIE color coordinates and decay time, were clarified in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号