首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Al/Nb co‐doped SrTiO3 microwave ceramics with the composition of SrTi1–x(Al0.5Nb0.5)xO3 (x = 0.03, 0.05, 0.1, and 0.15) have been synthesized via a standard solid‐state reaction method. The substitution of (Al0.5Nb0.5)4+ in B‐site inhibits the reduction in Ti4+ ions and the growth of grain size, then the transport of mobile charge carriers is limited, and thus the Q value is improved. For the SrTi0.9(Al0.5Nb0.5)0.1O3 ceramics, in addition to their high dielectric constant (εr ~185), they exhibit correspondingly a high Qf value (~ 9077 GHz) at 2.9 GHz, making the microwave ceramics suitable for myriad device miniaturization and high‐performance wireless communication.  相似文献   

2.
《Ceramics International》2020,46(3):3224-3235
Heavily Nb-doped strontium titanate (SrTi1-xNbxO3) nanoparticles and SrTi1-xNbxO3/TiO2 nanocomposite powders were synthesized by a sol-gel method. Structural characterization of the obtained powders was performed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and UV–visible spectroscopy. The powders were densified by spark plasma sintering (SPS) method up to 98% of the relative density. Upon composite production, the thermal conductivity of the un-doped samples was effectively decreased for SrTiO3/TiO2 nanocpmposite from 12 to 8 W/m.K. On the other hand, thermal conductivity of the Nb-doped SrTi0.8Nb0.2O3/TiO2 composite was decreased by about 50% down to 3.4 W/m.K in comparison to SrTiO3/TiO2 due to the phonon scattering at the point defects originated from both Nb atoms and TiO2 nanoparticles.  相似文献   

3.
A series of Mo-doped LiFe1−3xMoxPO4/C (x = 0.000, 0.025, 0.050, 0.100, 0.150) cathode materials are synthesized by sol–gel method. XRD, ICP and Rietveld refinement results reveal that Mo doped in the crystal lattice and probably occupied Fe site. The structure benefits the transportation of Li+ and the diffusion of Li+ in the doped materials are enhanced remarkably than that of the undoped one, which leads to excellent electrochemical performance. The doped sample with x = 0.025 exhibits the best electrochemical performance, with the initial discharge capacity of 162.3 mAh g−1 at 0.1 C rate.  相似文献   

4.
Ammonium metavanadate in aqueous solution at pH 4.5 displays in electrospray mass spectrometry experiments the presence of the two series of anions [HxVyOz] (x=0, 1; y=1–9; z=3–23) and [HxVyOz]2− (x=0, 1; y=3–17; z=9–44) as well as [H2VO4], [V10O28]6− and [H5V10O28] ions. Further, the cation series [Hm+1(VO3)m]+ (m=1–6), [Hm−1VmO3m−1]+ (m=4–10) and [Hm−3VmO3m−2]+ (m=6–11) are observed. The series of protonated and unprotonated anions differ by {V2O5} units, the formal building block in these clusters. A range of polyoxovanadates not previously reported have been observed.  相似文献   

5.
Catalytic centers in selective (allylic) oxidation and ammoxidation catalysts are multimetallic and multifunctional. In the historically important bismuth molybdates, used for propylene (amm)oxidation, they are composed of (Bi3+)(Mo6+)2 complexes in which the Bi3+ site is associated with the -H abstraction and the (Mo6+)2 site with the propylene chemisorption and O or NH insertion. An updated reaction mechanism is presented. In the Mo–V–Nb–Te–O x systems, three crystalline phases (orthorhombic Mo7.5V1.5NbTeO29, pseudohexagonal Mo6Te2VO20, and monoclinic TeMo5O16) were identified, with the orthorhombic phase being the most important one for propane (amm)oxidation. Its active centers contain all necessary key catalytic elements (2V5+/Mo6+, 1V4+/Mo5+, 2Mo6+/Mo5+, 2Te4+) for this reaction wherein a V5+ surface site (V5+ = O 4+V–O) is associated with paraffin activation, a Te4+ site with -H abstraction once the olefin has formed, and a (Mo6+)2 site with the NH insertion. Four Nb5+ centers, each surrounded by five molybdenum octahedra, stabilize and structurally isolate the catalytically active centers from each other (site isolation), thereby leading to high selectivity of the desired acrylonitrile product. A detailed reaction mechanism of propane ammoxidation to acrylonitrile is proposed. Combinatorial methodology identified the nominal composition Mo0.6V0.187Te0.14Nb0.085O x for maximum acrylonitrile yield from propane, 61.8% (86% conversion, 72% selectivity at 420 °C). We propose that this system, composed of 60% Mo7.5V1.5NbTeO29, 40% Mo6Te2VO20, and trace TeMo5O16, functions with a combination of compositional pinning of the optimum orthorhombic Mo7.5V1.5±x Nby Tez O29± phase and symbiotic mop-up of olefin intermediates through phase cooperation. Under mild reaction conditions, a single optimum orthorhombic composition might suffice as the catalyst; under demanding conditions this symbiosis is additionally required. Improvements in catalyst performance could be attained by further optimization of the elemental distributions at the active catalytic center of Mo7.5V1.5NbTeO29, by promoter/modifier substitutions, and incorporation of compatible cocatalytic phases (preferably epitaxially matched). High-throughput methods will greatly accelerate the rational catalyst design processes.  相似文献   

6.
Abstract

In this work, the degradation of terephthalic acid (TA) by vanadium oxide (VxOy) supported on zinc oxide (ZnO) was evaluated in a photocatalytic ozonation treatment based on two UV-A LEDs distributions. TEM analysis and specific surface area measurement suggest that VxOy is not supported on ZnO, while the EDXRF and XPS analysis indicated the presence of VxOy. The XPS analysis on VxOy/ZnO catalyst showed non-significant surface change between fresh and used catalyst. However, ozone decomposition showed a higher reaction rate constant for catalytic (230%) and photocatalytic ozonation (310%) in comparison with single ozone treatment. Photocatalytic ozonation with central and external irradiation arrays was evaluated in TA elimination by a kinetic study. The irradiation arrays had not statistical differences in the TA decomposition or oxalic acid formation. These results suggest that the construction of central bodies inside the reactor could be not necessary for photocatalytic processes.  相似文献   

7.
Lanthanum molybdate, La2Mo2O9, has been attracted considerable attention owing to its high concentration of intrinsic oxygen vacancies, which could be reflected by enhanced phonon scattering and low thermal conductivity. A new series of La2Mo2O9‐based oxides of the general formula La2?xSmxMo2?xWxO9, where x ≤ 0.2, were synthesized by citric acid sol–gel process. The variation in thermal conductivity with Sm3+and W6+ fractions was analyzed based on structure information provided by X‐ray diffraction and Raman spectroscopy. The fully dense La2?xSmxMo2?xWxO9 ceramics showed a minimum thermal conductivity value [κ = 0.84 W·(m·K)?1,T = 1073 K] at the composition of La1.8Sm0.2Mo1.8W0.2O9, which stems from the multiple enhanced phonon scatterings due to mass and strain fluctuations at the La3+ and Mo6+ sites as well as the high concentration of intrinsic oxygen vacancies embedded in the crystal lattice. The thermal conductivities present an abrupt decrease at the structural transition, which is due to the phase transformation from a low‐temperature ordered form (monoclinic α‐La2Mo2O9) to a high‐temperature disordered form (cubic β‐La2Mo2O9).  相似文献   

8.
The efficiency of catalytic ozonation with homogeneous (containing dissolved ions of Fe2+, Mn2+, Cu2+, Ni2+, Co2+, V5+, Cr3+, Mo6+) and heterogeneous (MnO2, Ni2O3, Fe2O3, CuO, Al2O3, CoO, V2O5, Cr2O3, MoO3, TiO2) catalysts and non-accompanied ozonation was compared for degradation of m-dinitrobenzene (m-DNB). Several transition metals in homogeneous and heterogeneous form improved significantly the ozone performance for degradation of m-DNB. This improvement was found to be due to supplementary formation of reactive species (hydroxyl radicals) and better ozone utilization. The effects observed were found to be strongly dependent on the treatment conditions.  相似文献   

9.
《Ceramics International》2016,42(7):8467-8472
Dielectric properties of Ca1−3x/2YbxCu3−yMgyTi4O12 (x=0.05, y=0.05 and 0.30) prepared using a modified sol–gel method and sintered at 1070 °C for 4 h were investigated. The mean grain sizes of the CaCu3Ti4O12 and co-doped Ca0.925Yb0.05Cu3−yMgyTi4O12 (y=0.05 and 0.30) ceramics were ≈15.86, ≈3.37, and ≈2.32 μm, respectively. Interestingly, the dielectric properties can be effectively improved by co-doping with Yb3+ and Mg2+ ions to simultaneously control the microstructure and properties of grain boundaries, respectively. These properties were improved over those of single-doped and un-doped CaCu3Ti4O12 ceramics. A highly frequency−independent colossal dielectric permittivity (≈104) in the range of 102–106 Hz with very low loss tangent values of 0.018–0.028 at 1 kHz were successfully achieved in the co-doped Ca0.925Yb0.05Cu3−yMgyTi4O12 ceramics. Furthermore, the temperature stability of the colossal dielectric response of Ca1−3x/2YbxCu3−yMgyTi4O12 was also improved to values of less than ±15% in the temperature range from −70 to 100 °C.  相似文献   

10.
《Ceramics International》2017,43(7):5585-5591
Two series of single-phased LaxSr(2−x)Fe(1+y)Mo(1−y)O6 and LaxSr(2−x)Fe(1+0.5y)Al0.5yMo(1−y)O6 (x=3y, y=0.05, 0.1, 0.15 and 0.2) double perovskites were prepared by solid-state reaction. The effects of Al-substitution on the structures, resistivity and magnetic properties of LaxSr(2−x)Fe(1+y)Mo(1−y)O6 were investigated. Although Al-replacement exhibits a negligible influence of on the B-site ordering degree, it results in the suppression of magnetisation caused by non-magnetic Al3+ ions. Reduction of grain sizes leads to increased resistivity, thus an optimised magnetoresistance (MR) behaviour is observed. The greatest MR extent improvement can be obtained when y is 0.15 and the MR% of the Al-doped ceramics reaches −10.5% (10 K, 1 T), which is 2 times greater than that of the undoped ceramics (−4.6%, 10 K, 1 T). Interestingly, the Curie temperature (Tc) of both Al-doped and undoped samples maintained relatively constant values of approximately 420 K and 405 K, respectively, which were different results from the data obtained for similar electron-doping systems in the literature.  相似文献   

11.
Praseodymium modified lead titanate ceramics (Pb1−xPrxTi1−2yMoyFeyO3) with x = 0.02, 0.04, 0.06, 0.08 and 0.10 and y = 0.02 have been prepared by high temperature solid state reaction technique. Cold pressed pellets were sintered at 1100 °C for 2 h. Lattice parameters and crystal tetragonality was determined by X-ray diffraction analysis. All the synthesized samples show single phase with tetragonal structure. Tetragonality decreases and relative density increases with the increase in praseodymium substitution. Electrical characteristics which include dielectric properties and ac conductivity were studied as a function of temperature and frequency. Variation of dielectric constant with temperature shows a ferroelectric phase transition and transition temperature (TC) decreases with increase in the praseodymium content. Nature of transition was studied and found to be diffused. Conductivity (σac) was measured as a function of frequency in the range 103–106 Hz at different temperature suggesting hopping mechanism.  相似文献   

12.

Abstract  

Scanning tunneling microscopy (STM) and tunneling spectroscopy studies were carried out to examine the redox properties of vanadium-containing H6+x P2Mo18−x V x O62 (x = 0, 1, 2, 3) Wells–Dawson heteropolyacid (HPA) catalysts. The HPAs formed two-dimensional well-ordered monolayer arrays on a graphite surface and exhibited a distinctive current–voltage behavior called negative differential resistance (NDR). The NDR peak voltages of H6+x P2Mo18−x V x O62 HPAs were correlated with reduction potentials determined by temperature-programmed reduction and with catalytic activity for oxidative dehydrogenation of isobutyraldehyde to methacrolein. The NDR peak voltage of H6+x P2Mo18−x V x O62 appeared at less negative voltage with increasing reduction potential and oxidation catalysis.  相似文献   

13.
The selective oxidation of propane to acrolein was performed on Ce-doped Ag0.3Mo0.5P0.3O x catalysts. The maximal acrolein yield of 4.4% with 28.7% acrolein selectivity was obtained on Ce0.1Ag0.3Mo0.5P0.3O y catalyst. The apparent activation energy of Ag0.3Mo0.5P0.3O x catalysts decreased with the addition of Ce. The addition of Ce facilitated the C-H activation of propane and enhanced conversion of intermediate propene to acrolein. The reducibility and the concentration of Mo5+ improved as the Ce content increased and was closely related to acrolein selectivity and propane conversion. The role of Ce in these catalysts was proposed: there was formation of the redox cycle Ce3+ + Mo6+ Ce4+ + Mo5+ in Ce-doped Ag0.3Mo0.5P0.3O x catalysts, leading to the modification of properties and catalytic performance of these catalysts.  相似文献   

14.
Preparation of anodes for oxygen evolution in seawater electrolysis was carried out. Manganese-molybdenum double oxides, Mn1−xMoxO2+x, prepared by anodic deposition from MnSO4-Na2MoO4 solutions showed the 100% oxygen evolution efficiency at a current density of 1000 A m−2 in 0.5 M NaCl at 30 °C and pH 12, but an increase in solution temperature resulted in dissolution of the oxides as molybdate and permanganate ions. In order to increase the stability of the electrodes at higher temperatures the addition of iron to the manganese-molybdenum oxides was performed by anodic deposition in MnSO4-Na2MoO4-FeNH4(SO4)2 solutions. The electrodes thus prepared showed the 100% oxygen evolution efficiency at 1000 A m−2 in 0.5 M NaCl at 30-90 °C, when proper amounts of molybdenum and iron were contained. The iron addition also enhanced the oxygen evolution efficiency. The electrodes were not composed of oxide mixtures but triple oxides, Mn1−xyMoxFeyO2+x−0.5y, consisting of Mn4+, Mo6+ and Fe3+. The formation of the triple oxides seemed responsible for enhancement of both oxygen evolution efficiency and stability.  相似文献   

15.
The electrochemical properties of amorphous vanadium pentoxide (V2O5) thin films deposited by reactive r.f.-sputtering were investigated using galvanostatic charge/discharge cycling and galvanostatic intermittent titration technique (GITT). As x in Li x V2O5−y increased (x = 0–2.0), the electromotive force of the lithium (Li)∣1 M LiClO4–propylene carbonate∣Li x V2O5−y cell decreased gradually without a potential plateau or an abrupt potential reduction, demonstrating that an irreversible structural change did not occur in the entire Li content. Chemical diffusivity of the Li ion in the Li x V2O5−y thin film measured using GITT was determined to be 4 × 10−13–7 × 10−14 cm2 s−1 in the Li content range investigated.  相似文献   

16.
In this study, ultra-thin nanobelts of Ag2V4O11/Ag were successfully synthesized. The synthesized ultra-thin nanobelts of Ag2V4O11/Ag are highly crystalline and the thickness is found to be about 5 nm. A lithium battery using ultra-thin nanobelts of Ag2V4O11/Ag as the active materials of the positive electrode exhibits a high initial discharge capacity of 276 mAh g−1, corresponding to the formation of LixAg2V4O11 (x = 6). With increased cycling, the electrode made of ultra-thin nanobelts of Ag2V4O11/Ag tends to loose electrochemical activity due to Ag+ ions in the ultra-thin nanobelts of Ag2V4O11 were reduced and new phase was formed.  相似文献   

17.
《Ceramics International》2022,48(1):837-846
Hierarchical structure Bi2MoxW1-xO6 (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5) solid solutions with high surface area are prepared by hydrothermal method without employing any surfactant. All the as-prepared products are hierarchical microspheres self-assembled by nanosheets. The piezocatalytic performance of Bi2MoxW1-xO6 solid solutions are investigated by the degradation of RhB under ultrasonic vibration. The experimental results show that the x value of Bi2MoxW1-xO6 has great influence on the piezocatalytic efficiency. Among which, the Bi2Mo0.4W0.6O6 presents a high value of the rate constant k of 0.119 min-1 by degrading 97.5% of RhB dye solution in 30 min. It is about 43.4% higher than that of pure Bi2WO6 sample, for which k is 0.083 min-1. Radical trapping test indicates that holes (h+) are the dominating active species in the degradation process. The improved piezocatalytic performance for Bi2Mo0.4W0.6O6 sample ascribes to the larger piezoelectric potential generated under a strained state, which facilitates the transfer of charge carriers and accelerate the piezocatalytic process. Our work presents a new design strategy of piezocatalysts for remediation of water pollution.  相似文献   

18.
Elastic and mechanical properties such as Young's modulus E, Poisson's ratio ν, Debye temperature θD, Vickers hardness Hv, fracture toughness Kc, and fracture surface energies γf of yCuOx·(100−y)P2O5 glasses (y= 45, 50, 55) with different copper valence states, i.e., R(Cu+) = Cu+/(Cu++ Cu2+), at room temperature (humidity 64%) have been examined. The following features have been found: (1) the glass transition temperature (218–434°C), Hv (2.7–4.4 GPa), E (50.6–78.2 GPa), and θD (358–434 K) decrease largely with increasing R(Cu+); (2) the mean atomic volume, Kc (0.56–1.14 MPa·m1/2), and γf (1.9–11.2 J·m−2) tend to increase with increasing R(Cu+); (3) 50CuOx·50P2O5 glasses with R(Cu+) = 0.42 and 0.55 have a high resistance against crack formation in Vickers indentation tests and no crack is observed in the 45CuOx·55P2O5 glass with R(Cu+) = 0.57 under an applied load of about 98 N. The results demonstrate that elastic and mechanical properties of yCuOx·(100−y)P2O5 glasses depend strongly on the copper valence state and the CuOx/P2O5 ratio. The unusal mechanical and elastic properties of copper phosphate glasses are well explained qualitatively by considering unique oxygen coordination and bonding states of Cu+ ions, i.e., lower coordination number and more covalent bonding compared with Cu2+ ions.  相似文献   

19.
Molybdenum carbide catalysts for water–gas shift (WGS) reaction were investigated to develop an alternate commercial LTS (Cu-Zn/Al2O3) catalyst for an onboard gasoline fuel processor. The catalysts were prepared by a temperature-programmed method and were characterized by N2 physisorption, CO chemisorption, XRD and XPS. It was found that the Mo2C catalyst showed higher activity and stability than the commercial LTS catalyst, even though both catalysts were deactivated during the thermal cycling runs. The optimum carburization temperature for preparing Mo2C was in the range of 640–650 °C. It was found that the deactivation of the Mo2C catalyst was caused by the transition of Moδ+ (IV < δ+ < VI, MoOxCy), MoIV and Mo2C on the surface of the Mo2C catalyst to MoVI (MoO3) with the reaction of H2O in the reactant. It was identified that molybdenum carbide catalyst is an attractive candidate for the alternate Cu-Zn/Al2O3 catalyst for automotive applications.  相似文献   

20.
The Ca3−xB2O6:xDy3+ (0.0 ≤ x ≤ 0.105) and Ca2.95−yDy0.05B2O6:yLi+ (0 ≤ y ≤ 0.34) phosphors were synthesized at 1100 °C in air by solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation (PLE) and photoluminescence (PL) spectra. The PLE spectra show the excitation peaks from 300 to 400 nm is due to the 4f-4f transitions of Dy3+. This mercury-free excitation is useful for solid state lighting and light-emitting diodes (LEDs). The emission of Dy3+ ions upon 350 nm excitation is observed at 480 nm (blue) due to the 4F9/2 → 6H15/2 transitions, 575 nm (yellow) due to 4F9/2 → 6H13/2 transitions and a weak 660 nm (red) due to 4F9/2 → 6H11/2 emissions, respectively. The optimal PL intensity of the Ca3−xB2O6:xDy3+ phosphors is found to be x = 0.05. Moreover, the PL results from Ca2.95−yDy0.05B2O6:yLi+ phosphors show that Dy3+ emissions can be enhanced with the increasing codopant Li+ content till y = 0.22. By simulation of white light, the CIE of the investigated phosphors can be tuned by varying the content of Li+ ions, and the optimal CIE value (0.300, 0.298) is realized when the content of Li+ ions is y = 0.22. All the results imply that the Ca2.95−yDy0.05B2O6:yLi+ phosphors could be potentially used as white LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号