首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a partial substitution of durum wheat semolina with three different species of mushrooms (white button, shitake and porcini) was undertaken to increase the nutritional value of the pasta. The cooking properties and textural characteristics of the pasta produced were also determined. The results showed that the addition of mushroom powder increased the cooking loss, as well as firmness and resistance of the uniaxial tension of the pasta. Porcini mushroom incorporation significantly decreased the swelling index, water absorption index and moisture content values of the cooked pasta, while, for the white button and shiitake mushrooms, there was no noticeable effect on either index compared with the control sample (containing exclusively durum wheat semolina). The addition of shiitake mushroom powder resulted in pasta with the highest firmness and tensile strength.  相似文献   

2.
The replacement of semolina (SEM) with raw:popped (90:10) amaranth flour blend (AFB) in pasta making at 25, 50, 75, and 100 g/100 g levels (flour basis, 14 g of water/100 g) was carried out to evaluate the effects on cooking quality and texture of the supplemented pasta samples. Significant differences on cooking quality characteristics and texture of the pasta samples were observed. The pasta solid loss increased, weight gain and firmness decreased as the AFB level increased. The semolina pasta showed the lowest solid loss (7 g/100 g) and the highest weight gain (188.3 g/100 g) and firmness (1.49 N), whereas the amaranth blend pasta was the softer (around half of the firmness of semolina pasta) and lost the higher amount of solids (11.5 g/100 g). The raw and popped AFB was suitable for increasing the nutritional quality through dietary fiber and high quality protein and even to obtain gluten-free pasta with acceptable cooking quality (solid loss of 3.5 g/100 g higher than that considered as acceptable for semolina pasta). The amaranth blend used in this study enables the partial or total replacement of wheat semolina in pastas with acceptable cooking quality and texture.  相似文献   

3.
The objective of this research was to study the effect of the addition of common bean flour to semolina on the cooking quality and total phenolic content of pasta. Pasta was obtained at three temperatures (60, 70 and 80 °C) and two levels of added common bean flour (15% and 30%); plain pasta (100% semolina) was used as control. Moisture, optimal cooking time, cooking loss, water absorption capacity, colour change, firmness and total phenolic and furosine contents were measured. The cooking time and water absorption were diminished in spaghetti pasta with added common bean flour; cooking loss increased and firmness decreased as a function of the bean flour percentage. A linear relationship between colour change and common bean flour content in pasta was found. Increases of furosine and phenolic contents in pasta with the addition of bean flour were observed.  相似文献   

4.
BACKGROUND: Microalgae are able to enhance the nutritional content of conventional foods and hence to positively affect human health, due to their original chemical composition. The aim of the present study was to prepare fresh spaghetti enriched with different amounts of microalgae biomass (Chlorella vulgaris and Spirulina maxima) and to compare the quality parameters (optimal cooking time, cooking losses, swelling index and water absorption), chemical composition, instrumental texture and colour of the raw and cooked pasta enriched with microalgae biomass with standard semolina spaghetti. RESULTS: The incorporation of microalgae results in an increase of quality parameters when compared to the control sample. The colour of microalgae pastas remained relatively stable after cooking. The addition of microalgae resulted in an increase in the raw pasta firmness when compared to the control sample. Of all the microalgae studied, an increase in the biomass concentration (0.5–2.0%) resulted in a general tendency of an increase in the pasta firmness. Sensory analysis revealed that microalgae pastas had higher acceptance scores by the panellists than the control pasta. CONCLUSION: Microalgae pastas presented very appellative colours, such as orange and green, similar to pastas produced with vegetables, with nutritional advantages, showing energetic values similar to commercial pastas. The use of microalgae biomass can enhance the nutritional and sensorial quality of pasta, without affecting its cooking and textural properties. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
The objective of this study was to evaluate the effect of β‐glucan‐rich fractions (BGRFs) from Pleurotus eryngii mushroom powder on the quality, textural properties, and sensory evaluation of common wheat pasta. Pasta was prepared from semolina flour and common wheat flour by replacing common wheat flour at 2%, 4%, and 6% with BGRFs. Semolina flour showed significantly higher viscosities than common wheat flour samples. However, all viscosities, except the breakdown viscosity, were reduced with increasing percentages of BGRFs. Replacement of the common wheat flour with BGRFs resulted in a reddish brown colored pasta with a lower L* value and a higher a* value. The common wheat pastas containing up to 4% BGRFs were not significantly different from semolina pasta with regard to cooking loss. Addition of up to 2% BGRFs had no significant impact on swelling index and water absorption. The addition of BGRFs in common wheat flour had a positive effect on the quality of common wheat pasta and resulted in hardness values similar to those of semolina pasta. In a sensory evaluation, cooked pasta with 2% BGRFs had the highest overall acceptability score. In summary, the results showed that common wheat flour containing 4% BGRFs could be used to produce pasta with an improved quality and texture properties similar to semolina pasta.  相似文献   

6.
Egg white protein and soy protein were incorporated into a banana and cassava flour blend (75:25) to produce gluten-free pasta. The objectives of study were to investigate the effects of the different protein sources on the physico-chemical properties of gluten-free pasta. The levels of protein inclusion were 0%, 5%, 10% and 15% of composite flour (w/w) for each type of protein. Pasta made from 100% durum wheat semolina was used as controls. The protein fortification affected the total starch, resistant starch and protein content of gluten-free pasta compared to semolina pasta. No significant effects of soy/egg white protein addition were found in either insoluble or soluble dietary fibre content. Cooking properties of pasta (optimum cooking time, swelling index, water adsorption index and cooking loss) and texture properties (firmness and extensibility) were affected by the level of protein addition and the type of protein. Results showed the utilisation of 25% cassava flour and protein inclusion have a promising application in gluten-free pasta production.  相似文献   

7.
The present study aims to explore the feasibility for utilization of semolina from Triticum aestivum and Triticum dicoccum in place of Triticum durum semolina in pasta processing. Pasta samples were prepared from the above mentioned wheat semolina with and without additives (ascorbic acid, dry gluten powder, hydroxy propyl methyl cellulose, and glycerol mono stearate) using lab scale extruder. Pasta samples were evaluated for pasting, protein profiles, cooking, texture, color, sensory, and microstructure parameters. The results indicated that T. aestivum semolina gave the lowest onset gelatinization temperature (66.9 °C) but the highest peak viscosity (1,053 BU). The T. aestivum pasta had a cream color (b = 15.69) while the T. dicoccum pasta was brownish (b = 11.91, a = 5.89). The cooking loss was more in the case of T. aestivum pasta (8.20%) compared with T. durum (6.90%) and T. dicoccum (7.12%) samples. Texture studies indicated that T. aestivum pasta had the least ratings on shear value (1.80 N) and overall sensory score of 6.21 N whereas shear value of 2.42 N and sensory scores of 6.89 after T. dicoccum pasta was comparable with that of T. durum pasta (2.46 N and 7.19 N). Scanning electron micrograph studies supported this. It was observed from the results obtained from gel filtration chromatograph that protein subunits play an important role in deciding pasta-making quality of different wheat species. The study also indicated that pasta quality of T. aestivum and T. dicoccum could be improved with unique combination of additives.  相似文献   

8.
This research is focusing on the texture, rheology, and sensory properties of pasta products enriched with the sweet potato starch (SPS) as well as on the content of resistant starch (RS) in these products. SPS was extracted from orange sweet potatoes using 1 mol. L−1 Sodium chloride solution. Durum wheat flour semolina was partially supplemented with 10, 20, and 30% (w/w) by SPS in the pasta formulation and the influence of enrichment on the cooking quality, mechanical and sensory properties, and the color was observed. SPS addition resulted in decreased water absorption and shorter dough development time, but the stability of the dough was also decreased. The optimum cooking time for pasta was reduced, but only slightly, on the other side, the swelling index increased, which negatively impacted on the firmness of the products. Increasing of the SPS content also resulted in higher stickiness values for pasta. When up to 20% of wheat flour was replaced, the color of finished products was less acceptable. In the products, the resistant and total starch content were determined. Pasta cooking resulted in the reduction of RS content, which was then increased by storing products for 24 hr. It can be concluded that the substitution of part of semolina flour with SPS increased the level of RS, but on the other side, it caused some significant differences from the quality of pasta made from semolina only.  相似文献   

9.
An experiment was conducted to determine the effect of different pasta:water ratios and nontraditional ingredients on the cooking properties of spaghetti. Spaghetti was made using semolina and semolina containing 20% (w/w) nontraditional (NT) ingredients (corn, flaxseed, lentil, oat, pinto bean and soybean flours). Pasta:water ratios evaluated were 13 g:400 mL, 27 g:400 mL and 48 g:400 mL. Addition of pasta caused a decline in cooking water temperature. The water temperature drop and recovery time to boiling (100 °C) varied with pasta:water ratio and with nontraditional ingredient in the spaghetti. These results were attributed to the calculated specific heat capacity of the ingredients incorporated in the spaghetti. Cooking time was reduced for all NT spaghetti with respect to the control sample and was longest when 48 g of pasta was cooked. Pasta:water ratio affected cooking loss but not cooked weight or cooked firmness. Cooking losses were greater with 13 g:400 mL compared to 48 g:400 mL.  相似文献   

10.
Quality attributes of waxy durum wheat (Triticum turgidum L), milled semolina and cooked spaghetti were examined and compared with those of two non‐waxy durum cultivars. With the exception of kernel hardness, wheat quality characteristics were similar for both waxy and non‐waxy durum. Compared with average values obtained for durum wheat grown in North Dakota (USA) during the crop year 2000, the values obtained for the wheat used in this study were equal or better for most parameters evaluated. Semolina extraction for all samples was lower than the 2000 average of 62.6%. The waxy lines had higher ash, lower speck count, similar protein quantity, lower wet gluten and stronger mixograph curves than the non‐waxy cultivars. Waxy durum semolina had higher lipid content, starch damage, stirring number and flour swelling values. Spaghetti made from waxy durum semolina had shorter cooking time, similar cooking loss and cooked weight and lower firmness values, which would be unacceptable by most standards. Spaghetti made from blends containing 20–80% waxy durum semolina were evaluated. Cooking time and firmness decreased and cooking loss increased as the amount of waxy semolina increased. Acceptable spaghetti was obtained using 20–40% waxy semolina blends, depending on the quality of the non‐waxy blending material. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
α‐Galactoside‐free lupin flour has been used to supplement durum wheat semolina flour in order to increase the nutritive value of pasta products. Supplemented pasta products had a shorter cooking time, higher cooking water absorption, cooking loss and protein loss in water than control pasta prepared with only semolina. Sensory evaluation of cooked pastas showed that products supplemented with 80 g kg?1 of α‐galactoside‐free Lupinus angustifolius var. Emir flour or with 100 g kg?1 of α‐galactoside‐free Lupinus angustifolius var. Troll flour showed the same acceptability by panellists as the semolina pasta. These levels of supplementation were selected for further studies. The cooked α‐galactoside‐free lupin/semolina pastas showed higher amounts of protein, dietary fibre, calcium, phosphorus, magnesium, zinc and antioxidant capacity than control pasta and a reasonable level of vitamin B1, vitamin B2 and vitamin E. Biological assessment of cooked pastas indicated that the true protein digestibility did not change after the fortification of semolina but protein efficiency ratio increased sharply in the pasta supplemented with α‐galactoside‐free lupin flours (2.07 and 1.92 for Emir and Troll lupin varieties, respectively) in comparison with the control pasta (1.11). It is concluded that the α‐galactoside‐free lupin flours are an adequate ingredient to improve the nutritional quality of pasta products without adding flatulent oligosaccharides. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
Flaxseed ( Linum usitatissimum L.) is an emerging food ingredient because of its several health benefits. Research was conducted to determine the effects of semolina, hydration level during extrusion and flaxseed flour concentration on the physical and cooking characteristics of freshly extruded pasta. The appearance of fresh pasta reflected the appearance of the ingredients. Fresh pasta became darker and redder as flaxseed flour concentration increased. Flaxseed flour did not affect cooking loss or water absorption during cooking of fresh pasta. However, flaxseed flour reduced the cooked firmness of fresh pasta by decreasing the dough strength. The cooked firmness of fresh pasta containing flaxseed flour was improved by using a semolina that makes a strong dough rather than a weak dough, and by extruding at a low (29%) compared to high (31%) hydration level.

PRACTICAL APPLICATIONS


Research results reported in this article would be useful in the development of a processing protocol for fresh pasta containing flaxseed flour and possibly other nontraditional ingredients. The results provide support for the need to use a strong dough-forming semolina and to extrude the semolina–flaxseed flour mixture at a low hydration level (29%) in order to produce a fresh pasta that has desirable cooking/cooked properties.  相似文献   

13.
Whole grain sorghum is a valuable source of resistant starch and polyphenolic antioxidants and its addition into staple food like pasta may reduce the starch digestibility. However, incorporating nondurum wheat materials into pasta provides a challenge in terms of maintaining cooking quality and consumer acceptability. Pasta was prepared from 100% durum wheat semolina (DWS) as control or by replacing DWS with either wholegrain red sorghum flour (RSF) or white sorghum flour (WSF) each at 20%, 30%, and 40% incorporation levels, following a laboratory‐scale procedure. Pasta samples were evaluated for proximate composition, in vitro starch digestibility, cooking quality, and consumer acceptability. The addition of both RSF and WSF lowered the extent of in vitro starch digestion at all substitution levels compared to the control pasta. The rapidly digestible starch was lowered in all the sorghum‐containing pastas compared to the control pasta. Neither RSF or WSF addition affected the pasta quality attributes (water absorption, swelling index, dry matter, adhesiveness, cohesiveness, and springiness), except color and hardness which were negatively affected. Consumer sensory results indicated that pasta samples containing 20% and 30% RSF or WSF had acceptable palatability based on meeting one or both of the preset acceptability criteria. It is concluded that the addition of wholegrain sorghum flour to pasta at 30% incorporation level is possible to reduce starch digestibility, while maintaining adequate cooking quality and consumer acceptability.  相似文献   

14.
The study investigated the effect of fermentation of cassava roots on the quality characteristics of flour and pasta. Cassava roots were fermented under natural condition for a period of 12, 36 and 60 h. Physicochemical properties, microbial analysis, pasting properties, in vitro digestibility, X-ray diffraction analysis of cassava flour, cooking properties, texture profile analysis (TPA) and sensory properties of the pasta were examined. The moisture content, carbohydrate, water absorption capacity, swelling and solubility index of fermented flour increased with an increase in fermentation period. Also, as fermentation progressed, increase in pasting viscosities of cassava flour was observed. The resistant starch (RS) content of cassava flour decreased with increasing period of fermentation. The duration of fermentation process significantly affected textural properties and cooking loss of cassava pasta. Sensory assessment showed that cassava roots fermented for 36 h gave pasta with the most acceptable qualities.  相似文献   

15.
Beef lungs are an underutilised co-product of the meat industry that could be used as an ingredient to supplement the protein content of cereal foods. Beef lung powder (BLP) had a protein content of 87% (dry weight basis), an amino acid score of 1, and contained 1 mg g−1 iron. Fresh semolina pasta was used as a model food, and BLP was incorporated up to 20%. Incorporation of 10% BLP improved the indispensable amino acid score of the pasta from 0.48 to 0.91. At that level of incorporation, higher cooking loss and redder (increased ‘a’ value) and darker (decreased ‘L’ value) colour resulted. The fresh pasta with BLP had a lower glycaemic response compared to control samples. BLP improved the functional value of the fresh pasta and is a potential ingredient in the development of new food products.  相似文献   

16.
In this study, pasta with dried Eruca vesicaria leaves commonly known as Rocket salad and spinach leaves flours were prepared. Samples were evaluated for its chemical composition, cooking quality, textural, colour and consumer acceptance. Results showed that pasta with Eruca vesicaria had the highest dietary fibre content (5.30–9.50 g/100 g) and the lowest fat content (2.13–2.80 g/100 g). The optimally cooked pasta with 5% of leaves (stored 30 days) and pasta with 10% of leaves (stored 14 days) have good cooking quality with cooking loss ≤8%. The green colour and textural characteristics of pastas were stable during all period at 4 °C. Textural characteristics of pasta with rocket and spinach were similar. Pasta with 10% of rocket leaves has presented the highest overall acceptability score.  相似文献   

17.
Protein-enriched gluten-free pasta was prepared from oat starch-rich endosperm (SRE), which was substituted with different proportions of oat protein concentrate (OPC) and/or faba protein concentrate (FPC) fractions in order to obtain a similar protein content (18% and 35%). Accordingly, the health claims ‘source of protein’ and ‘high protein’ were achieved. Pasta with OPC and FPC had lower optimal cooking time (8 and 6.3 min), cooking loss (6% and 10.2% dm) and water absorption (152% and 147%) than control SRE pasta (9.3 min; 12.3% dm and 185%). Addition of protein concentrates produced an increase in hardness and chewiness of spaghetti. The glycaemic index of pasta was lowered by the addition of protein ingredients, the lowest value being achieved with FPC. In vitro protein digestibility of pasta increased up to 3.5% for OPC and up to 7.1% in case of FPC addition. The most protein-digestible pasta was that with FPC addition to reach 35% protein content.  相似文献   

18.
Resistant starch in unripe banana offers a possibility to alter the glycemic properties in convenience foods, such as pasta. In this study, pasta formulations were tried by replacing 30% semolina with varying proportions of green banana flour (GBF) and banana-modified starch (MS). The effect of substitution on physicochemical and functional properties, including in-vitro starch digestibility, antioxidant property and consumer acceptability, was evaluated. Among the composite flours, MS recorded higher swelling power and water holding capacity. The replacement of semolina with GBF resulted in higher resistant starch, 4–5 times enhanced indigestible fraction, phenols, flavonoids and antioxidant activity in pasta. Pronounced increment was also observed in potassium, calcium and magnesium content in blended pasta. Optimal cooking time was reduced with the addition of GBF, whereas it was enhanced with MS. GBF and MS in the blends, decreased the hydrolysis rate (up to 24%) and glycemic index (up to 17%) of pasta. However, the addition of MS beyond 10% negatively influenced springiness and chewiness. Microstructural studies explained the positive structural changes with the addition of GBF and MS. Sensory attributes disclosed that the addition of 25% GBF and 5% MS is a desirable proportion for pasta with a functional characteristics.  相似文献   

19.
Quality of pastas made from wheat flour (WF) and durum wheat semolina (DWS) with added resistant starch (RS) and distilled monoglyceride was evaluated through a central composite rotational design. A press extruder was used to produce the pasta. Water absorption index showed statistical difference between the WF and DWS indicating that proteins present in each samples were different. Pasta samples obtained with the WF presented a shorter cooking time and less solid loss than those obtained with DWS. Increase in volume and weight gain was similar for both samples. Instrumental texture responses showed that pasta made from DWS had higher values for firmness and springiness and lower for adhesiveness when compare to WF pastas. Nevertheless, pasta made from both samples showed similar behaviours of final RS contents of 4% after cooking. Therefore, they could be considered as a source of fibres according to the Brazilian Laws (3 g dietary fibre/100 g product).  相似文献   

20.
Pigeon peas (Cajanus cajan) seeds were germinated for 4 days at 20 °C in darkness in order to improve the nutritional quality of seeds. Germination brought about a sharp reduction of α-galactosides, phytic acid and trypsin inhibitor activity (83%, 61% and 36%, respectively) and an increment of vitamin B2 (145%), vitamin C (from negligible amounts to 14 mg/100 g d.m.), vitamin E (108%) and total antioxidant capacity (28%). These flours were used as ingredients to produce pasta products in a proportion of 5%, 8% and 10%. The supplemented pasta products had shorter cooking time and higher water absorption, cooking and protein losses in water than had control pasta (100% semolina). From sensory evaluation, fortified pasta generally had acceptability similar to control pasta. Cooked pasta with the highest level of substitution (semolina:germinated pigeon pea flour at 10%) was chemically and biologically evaluated and results showed that protein, fat, dietary fibre and mineral contents were improved. Fortified pasta provided more vitamin B1, B2, E and antioxidant capacity than did control pasta. Biological assessment of fortified, cooked pasta indicated that true TD and PER value increased by 12% and 64%, respectively, in comparison with control. The germinated pigeon pea flour can be an excellent ingredient to increase the nutritional value of semolina pasta without affecting the sensory properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号