首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the electrical properties of Bi4Ti3O12-based Aurivillius-type ceramics were tailored by a B-site co-doping strategy combining high valence Ta5+ and low valence Cu2+. A series of Bi4Ti3−x(Cu1/3Ta2/3)xO12 (BTCT) (x = 0, 0.005, 0.01, 0.015, 0.02, 0.025, and 0.03) ceramics were prepared by the conventional solid-state reaction method. The effect of Cu/Ta co-doping on the crystal structure, microstructure, dielectric properties, piezoelectric properties, ferroelectric properties, and electrical conductivity of these ceramics was systematically investigated. Co-doping significantly enhanced the piezoelectric properties and DC electrical resistivity of the resulting composites. The optimized comprehensive performances were obtained at x = 0.015 with a large piezoelectric coefficient (34 pC/N) and a relatively high resistivity of 9.02 × 106 Ω cm at 500°C. Furthermore, the ceramic also exhibited stable thermal annealing behaviors and excellent fatigue resistance. The results of this study demonstrated great potential of the Cu/Ta co-doped Bi4Ti3O12 ceramics for high-temperature piezoelectric device applications.  相似文献   

2.
The Eu3+-modified Bi0.5Na0.5TiO3 (BNT) ceramics have been fabricated by the solid-state reaction method. The impact of Eu3+ doping on the structure, photoluminescence, and electrical properties has been studied by XRD, SEM, PL spectra, and LCR meter. X-ray diffraction analysis reveals that the crystal structure of the samples is well matched with the trigonal perovskite, and the optimal temperature of presintering is 880°C. The Eu3+-doped BNT ceramics show excellent red fluorescence at 614 nm corresponding to the 5D07F2 transition of Eu3+ under 466 nm excitation and relatively long fluorescence lifetime. The BNT-0.02Eu ceramic density is up to 5.68 g/cm3 and the relative density is up to 94.6% with sintering temperature 1075°C. The piezoelectric constant (d33) of samples has been significantly improved up to 110 pC/N by Eu3+ doping. The BNT-0.03Eu ceramic presintered at 880°C and sintered at 1050°C has good dielectric properties and excellent luminescence properties. Eu3+-doped BNT ceramics make it potential applications for novel integrated electro-optical and multifunctional devices.  相似文献   

3.
BiFeO3-BaTiO3 ceramics are promising lead-free piezoelectric ceramics due to their high piezoelectric properties and high Curie temperature, but their high leakage current density makes the poling difficult. In this study, a decreased leakage current density by three orders of magnitude was obtained in Bi0.5Na0.5TiO3 (BNT) added 0.67BiFeO3-0.33BaTiO3 (BF-BT) ceramics. It was found that the largely improved insulating properties benefit from the reduced oxygen vacancies and weak reduction of Fe3+ to Fe2+ as confirmed by photoluminescence and X-ray photoelectron spectroscopy measurements, thereby contributing to high-temperature and high-field poling. In addition, the introduction of BNT leaded to increased grain size. Due to the grown grains as well as reduced oxygen vacancies and Fe2+, enhanced insulating and optimal piezoelectric properties with Pr = 24.2 µC/cm2, d33 = 183 pC/N, kp = 0.28, and TC = 467°C were achieved in BF-BT-0.05BNT ceramics.  相似文献   

4.
The Ag-Pd internal electrode of multilayer piezoelectric ceramics needs to be sintered below 1000°C, and lead wires and components need to be welded with lead-free solder at 260°C. PNN–PMW–PZT–xSr piezoelectric ceramics with high Curie temperature (Tc > 260°C) were synthesized at a low sintering temperature (960°C) to meet the requirements of multilayer piezoelectric devices. The relationship between structures (phase, domain, and microstructures) and electrical properties (piezo/ferroelectric properties, and dielectric relaxation) in the Sr2+ substituted ceramics was investigated. Rietveld refinement and Raman spectra show that Sr2+ substitution can cause the phase change and increase the force constant of [BO6] octahedron. The piezoelectric response increases with increasing the content of the tetragonal phase (CTP) in the rhombohedral-tetragonal (R-T) coexisted ceramics. The ceramics with 0.6 mol% Sr2+ substitution have minimum activation energy for domain wall movement (Ea) of 0.0362 eV which favors the formation of nanometer-sized domains, and possess excellent electrical properties (d33 = 623 pC/N, d33* =783 pm/V, Tc =295°C). The higher the CTP, the lower the Ea. The lower Ea favors the rotation of polarization direction and extension, and is beneficial to the generation of the nanometer-size domains, resulting in high piezoelectric properties.  相似文献   

5.
《Ceramics International》2022,48(6):7550-7556
Piezoelectric materials are widely used in electromechanical energy conversion, such as in sensors, transducers, and self-powered materials. In this paper, the influence of the Sm doping content on the microstructure and ferroelectric, piezoelectric, dielectric, and field-induced strain properties of 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-PT) ceramics was investigated. Sm-doped PMN-PT ceramics with both high piezoelectric properties (d33~1406 pC/N) and a large electromechanical coupling coefficient (kp~0.69) were synthesized. Based on their piezoelectric effect, a maximum output voltage of 31 V was achieved under external forces. The output voltages showed satisfactory stability, repeatability, and sensitivity under periodic external forces; hence, Sm-doped PMN-PT piezoelectric ceramics are potential candidates for energy conversion and signal monitoring.  相似文献   

6.
(Ba0.95Ca0.05)(Ti0.88Zr0.12)O3 (BCTZ) ceramics have been produced in a protective atmosphere of industrial N2 gas for potential piezoelectric applications. For comparison, the ceramics were also sintered at 1200–1400 °C in air. The results revealed that the reducing atmosphere of pO2 = 5 × 102 Pa had no substantial effect on the phase structure or the microstructure of the BCTZ ceramics. The XRD patterns suggested a tetragonal to pseudocubic phase transition at sintering temperatures above 1300 °C in both atmospheres. The nitrogen-sintered BCTZ samples had higher dielectric constants r but lower electromechanical coupling coefficients kp than the air-sintered samples. The piezoelectric constant d33 for the BCTZ ceramics was not significantly influenced by the reducing atmosphere of pO2 = 5 × 102 Pa. The correlation of dielectric and piezoelectric properties of the BCTZ ceramics with the sintering temperature was explained based on a competing mechanism between phase structure and microstructure.  相似文献   

7.
The 0.968[(K0.48Na0.52)]Nb0.95+xSb0.05O3–0.032(Bi0.5Na0.5)ZrO3 [KNNxS–BNZ] lead‐free ceramics with nonstoichiometric niobium ion were fabricated via conventional solid‐state sintering technique and their piezoelectric, dielectric and ferroelectric properties were investigated. When x = 0.010, enhanced piezoelectric properties (d33 ≈ 421 pC/N and kp ≈ 0.47) were obtained due to the construction of rhombohendral—tetragonal phase boundary near room temperature. The KNNxS–BNZ ceramics possesses enhanced Curie temperature (Tc) with improved piezoelectric constant. A large d33 of ~421 pC/N and a high Tc ~256°C can be simultaneously induced in the ceramics with x = 0.010. Especially, good thermal stability was observed in a broad temperature range. The results indicated that our work could benefit development of KNN‐based ceramics and widen their application range.  相似文献   

8.
BaTiO3 based ceramics (with some additives such as ZrO2, SnO2, etc.) were prepared by solid state reaction. Mn2+ or Mn3+ as an acceptor substituting for Ti4+ in B site and Bi3+ as a donor substituting for Ba2+ in A site were co-doped in BaTiO3 based ceramics. The dielectric properties of BaTiO3 based ceramics co-doped with Bi/Mn were investigated. The results show that the dielectric properties of BaTiO3 based ceramics co-doped with Bi/Mn are affected by the mole ratio of donor and acceptor (Bi/Mn). When the mole ratio of donor and acceptor is high, dielectric dispersion behavior was observed and the dielectric constant decrease and remnant polarization, coercive field and piezoelectric constant will varied. When Bi varied from 1.0% to 2.0 mol% (Mn = 0.8 mol%), remnant polarization from 10.35 to 2.25 μC/cm2, coercive field from 4 to 2.75 kV/cm, and piezoelectric constant d33 from 137 to 36 pC/N respectively.  相似文献   

9.
There is a great demand to develop ferroelectric ceramics with both high piezoelectric coefficient and broad temperature usage range for emerging electromechanical applications. Herein, a series of Sm3+-doped 0.25Pb(Mg1/3Nb2/3)O3-(0.75−x)PbZrO3-xPbTiO3 ceramics were fabricated by solid-state reaction method. The phase structure, dielectric and piezoelectric properties were investigated, where the optimum piezoelectric coefficient d33 = 745 pC/N and electromechanical coupling factor k33 = 0.79 were obtained at the morphotropic phase boundary composition x = 0.39, with good Curie temperature TC of 242°C. Of particular importance is that high-temperature stability of the piezoelectric and field-induced strain was obtained over the temperature range up to 230°C for the tetragonal compositions of x = 0.40. The underlying mechanism responsible for the high piezoelectricity and temperature stability is the synergistic contribution of the MPB and local structural heterogeneity, providing a good paradigm for the design of high-performance piezoelectric materials to meet the challenge of piezoelectric applications at elevated temperature.  相似文献   

10.
11.
Lead-free piezoelectric ceramics (1 − x)(0.98K0.5Na0.5NbO3–0.02LiTaO3)–x(0.96Bi0.5Na0.5TiO3–0.04BaTiO3) (KNN–LT–BNT–BT) with x = 0–0.10 have been synthesized by a conventional sintering technique. All samples possess pure perovskite structure, showing room temperature symmetries of orthorhombic at x < 0.02, and tetragonal at 0.05 ≤ x ≤ 0.10. A coexistence of orthorhombic and tetragonal phases in the composition range of 0.02 ≤ x < 0.05 in this system is caused by the temperature of the polymorphic phase transition (PPT) decreasing to around room temperature but not the behavior of the morphotropic phase boundary (MPB). The samples near the coexistence region exhibit improved properties, which are as follows: piezoelectric constant d33 = 155 pC/N, remnant polarization Pr = 24.2 μC/cm2, and coercive electric field Ec = 2 kV/mm. The results indicate that although this kind of ceramics displays good properties, further study is needed to promote the stabilities of the ceramics in order to utilize them in varying temperature environments.  相似文献   

12.
Multilayer components with excellent piezoelectric performance have been developed for fulfilling the requirement of new-generation electromechanical devices and systems. Multilayering of the piezoelectric ceramic requires good sinterability preferentially at lower temperature. In this study, copper (II) oxide (CuO) was utilized as the sintering additive to increase the sinterability of 0.49Pb(Ni1/3Nb2/3)O3–0.51Pb(Hf0.3Ti0.7)O3 (PNN-PHT) ceramics at low temperature, and simultaneously enhance the piezoelectric and dielectric properties of the ceramics. The results demonstrated that the addition of CuO influenced the sintering behavior, grain growth, and piezoelectric properties of the PNN-PHT ceramics. A ternary high performance piezoelectric PNN-PHT ceramic sintered at 1050°C with 0.5 mol% CuO exhibited excellent properties as follows: d33 = 912 pC N−1 and εr = 6665.  相似文献   

13.
CuO-doped (1–x)(Na0.2K0.8)NbO3-xBaZrO3 ceramics (0.0 ≤ x ≤ 0.06) were densified at 960°C. The ceramic with x = 0 exhibited a large sprout-shaped strain vs electric-field (S-E) curve and a double polarization vs electric-field (P-E) hysteresis curve, owing to the defect polarization (PD) developed between Cu2+ ions at Nb5+ sites and oxygen vacancies. The sizes of the S-E and P-E loops decreased with increasing x, owing to the decrease in the number of PDs. The ceramic with x = 0.04 displayed small S-E and P-E curves, indicating its small dielectric loss. It exhibited large strain (0.19% at 8.0 kV/mm) at room temperature, which was maintained at 200°C. A similar strain was observed after applying 106 cycles of an electric field (3.0 kV/mm). Hence, this specimen exhibited large strain with excellent thermal and fatigue properties. Moreover, the synthesized multilayer actuator using the ceramic with x = 0.04 showed excellent vibrational properties, making it promising for applications in multilayer piezoelectric actuators.  相似文献   

14.
yPb(In1/2Nb1/2)O3-(1 − x − y)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (yPIN-(1 − x − y)PMN-xPT) polycrystalline ceramics with morphotropic phase boundary (MPB) compositions were synthesized using columbite precursor method. X-ray diffraction results indicated that the MPB of PIN-PMN-PT was located around PT = 0.33-0.36, confirmed by their respective dielectric, piezoelectric and electromechanical properties. The optimum properties were found for the MPB composition 0.36PIN-0.30PMN-0.34PT, with dielectric permittivity ?r of 2970, piezoelectric coefficient d33 of 450 pC/N, planar electromechanical coupling kp of 49%, remanent polarization Pr of 31.6 μC/cm2 and TC of 245 °C. According to the results of dielectric and pyroelectric measurements, the Curie temperature TC and rhombohedral to tetragonal phase transition temperature TR-T were obtained, and the “flat” MPB for PIN-PMN-PT was achieved, indicating that the strongly curved MPB in PMN-PT system was improved by adding PIN component, offering the possibility to grow single crystals with high electromechanical properties and expanded temperature usage range (limited by TR-T).  相似文献   

15.
A small quantity of Eu3+ ions were doped in the lead‐free ferroelectric K0.5Na0.5NbO3xLiNbO3 (KNN–xLN, 0 ≤ x ≤ 0.08) ceramics to investigate the NbO6 octahedral distortion induced by the increasing LN content. In addition, the phase structure, ferroelectric, and photoluminescence properties of K0.5Na0.5NbO3xLiNbO3:0.006Eu3+ (KNN–xLN:0.006Eu3+) lead‐free piezoelectric ceramics were characterized. All the X‐ray diffraction, Raman spectra, dielectric constant vs temperature measurements and the photoluminescence of Eu3+ ions demonstrated that the prepared ceramics undergo a polymorphic phase transition (PPT, from orthorhombic to tetragonal phase transformation) with the rising LN content, and the PPT region locates at 0.05 ≤ x ≤ 0.06. The ferroelectric properties, Raman intensity ratios and photoluminescence intensity ratios show similar variations with the increasing LN content, all with a maximum value achieved at the PPT region. We believe that the close relationship among the ferroelectric properties, Raman intensity ratios, and photoluminescence intensity ratios is caused by the NbO6 octahedral distortion. The photoluminescence of Eu3+ ion was discussed basing on the crystal‐symmetry principle and Judd‐Ofelt theory.  相似文献   

16.
0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 (x = ?0.04, 0, 0.02; named NB0.46T‐6BT, NB0.50T‐6BT, NB0.52T‐6BT, respectively) lead‐free piezoelectric ceramics were prepared via the solid‐state reaction method. Effects of Bi3+ nonstoichiometry on microstructure, dielectric, ferroelectric, and piezoelectric properties were studied. All ceramics show typical X‐ray diffraction peaks of ABO3 perovskite structure. The lattice parameters increase with the increase in the Bi3+ content. The electron probe microanalysis demonstrates that the excess Bi2O3 in the starting composition can compensate the Bi2O3 loss induced during sample processing. The size and shape of grains are closely related to the Bi3+ content. For the unpoled NB0.50T‐6BT and NB0.52T‐6BT, there are two dielectric anomalies in the dielectric constant–temperature curves. The unpoled NB0.46T‐6BT shows one dielectric anomaly accompanied by high dielectric constant and dielectric loss at low frequencies. After poling, a new dielectric anomaly appears around depolarization temperature (Td) for all ceramics and the Td values increase with the Bi3+ amount decreasing from excess to deficiency. The diffuse phase transition character was studied via the Curie–Weiss law and modified Curie–Weiss law. The activation energy values obtained via the impedance analysis are 0.69, 1.05, and 1.16 eV for NB0.46T‐6BT, NB0.50T‐6BT and NB0.52T‐6BT, respectively, implying the change in oxygen vacancy concentration in the ceramics. The piezoelectric constant, polarization, and coercive field of the ceramics change with the variation in the Bi3+ content. The Rayleigh analysis suggests that the change in electrical properties of the ceramics with the variation in the Bi3+ amount is related to the effect of oxygen vacancies.  相似文献   

17.
Cerium (Ce)-modified Bi4Ti2.94W0.03Ta0.03O12 (BITWT) high Curie temperature ceramics (abbreviated as BITWT-xCe) were fabricated by a conventional solid-state sintering method. All BITWT-xCe ceramics had an orthogonal phase, but the structural distortion of the Ce-doped BITWT ceramics was higher than that of BITWT ceramics, which reduced symmetry and improved piezoelectric performance. The relative density (ρr) of BITWT-xCe ceramics was greater than 97%. Under the same conditions, the hysteresis loop of BITWT-0.04Ce ceramics had higher saturation than that of BITWT ceramics. The piezoelectric constant (d33) was enhanced, and the highest d33 of 24.7 pC/N at x = 0.04 was obtained, which was 25% higher than that of BITWT ceramics (d33 = 19.8 pC/N). In addition, the tentative conduction mechanism of BITWT-xCe ceramics was also discussed. Two oxidations (Ce3+ and Ce4+) were present in the Ce-doped BITWT ceramics.  相似文献   

18.
New lead‐free perovskite solid solution ceramics of (1 ? x)(Bi1/2Na1/2)TiO3xBa(Ni1/2Nb1/2)O3[(1?x)BNT–xBNN,= 0.02–0.06) were prepared and their dielectric, ferroelectric, piezoelectric, and electromechanical properties were investigated as a function of the BNN content. The X‐ray diffraction results indicated that the addition of BNN has induced a morphotropic phase transformation from rhombohedral to pseudocubic symmetry approximately at = 0.045, accompanying an evolution of dielectric relaxor behavior as characterized by enhanced dielectric diffuseness and frequency dispersion. In the proximity of the ferroelectric rhombohedral and pseudocubic phase coexistence zone, the = 0.045 ceramics exhibited optimal piezoelectric and electromechanical coupling properties of d33~121 pC/N and kp~0.27 owing to decreased energy barriers for polarization switching. However, further addition of BNN could cause a decrease in freezing temperatures of polar nanoregions till the coexistence of nonergodic and ergodic relaxor phases occurred near room temperature, especially for the = 0.05 sample which has negligible negative strains and thus show the maximum electrostrain of 0.3% under an external electric field of 7 kV/mm, but almost vanished piezoelectric properties. This was attributed to the fact that the induced long‐range ferroelectric order could reversibly switch back to its original ergodic state upon removal of external electric fields.  相似文献   

19.
The lead-free piezoelectric ceramics (Na.47Bi.47Ba.06)1-xCaxTiO3 (x?=?0, 0.01, 0.02, 0.03, 0.05, and 0.08, abbreviated as BNBTC/0, BNBTC/1, BNBTC/2, BNBTC/3, BNBTC/5, and BNBTC/8, respectively) were obtained using the solid-state reaction method. The structure, electric conductivity, and dielectric, ferroelectric, and piezoelectric properties of the Ca2+-doped (Na.47Bi.47Ba.06)TiO3 ceramics were thoroughly investigated. The ceramics sintered at 1200?°C exhibit dense microstructures, having relative densities higher than 96%. The X-ray diffraction results demonstrate that all ceramics have a pure perovskite structure. The mean grain sizes of the ceramics are related to the Ca2+ quantity. A small quantity of Ca2+ ions (x?≤?0.03) improves the piezoelectric and ferroelectric properties of the samples. The dielectric behavior of the samples is sensitive to the Ca2+ content and electric poling. The results demonstrate that the electrical properties of the (Na.47Bi.47Ba.06)TiO3 lead-free ceramics can be well tuned by varying the Ca2+ quantity.  相似文献   

20.
A ternary ferroelectric ceramic system, (1?x?y)Pb(In1/2Nb1/2)O3xPb(Zn1/3Nb2/3)O3yPbTiO3 (PIN–PZN–PT, x = 0.21, 0.27, 0.36, 0.42), was prepared using a two‐step precursor method. The phase structure, dielectric, piezoelectric, and ferroelectric properties of the ternary ceramics were systematically investigated. A morphotropic phase boundary (MPB) was identified by X‐ray diffraction. The optimum piezoelectric and electromechanical properties were achieved for a composition close to MPB (0.5PIN–0.21PZN–0.29PT), where the piezoelectric coefficient d33, planar electromechanical coupling factor kp, and remnant polarization Pr are 660 pC/N,72%, and 45 μC/cm2, respectively. The Curie temperature TC and rhombohedral to tetragonal phase transition temperature TR?T were also derived by temperature dependence of dielectric measurements. The strongly “bended” MPB in the PIN–PT system was found to be “flattened” after addition of PZN in the PIN–PT–PZN system. The results demonstrate a possibility of growing ferroelectric single crystals with high electromechanical properties and expanded range of application temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号