首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro starch digestibility, expected glycemic index (eGI), and thermal and pasting properties of flours from pea, lentil and chickpea grown in Canada under identical environmental conditions were investigated. The protein content and gelatinization transition temperatures of lentil flour were higher than those of pea and chickpea flours. Chickpea flour showed a lower amylose content (10.8–13.5%) but higher free lipid content (6.5–7.1%) and amylose–lipid complex melting enthalpy (0.7–0.8 J/g). Significant differences among cultivars within the same species were observed with respect to swelling power, gelatinization properties, pasting properties and in vitro starch digestibility, especially chickpea flour from desi (Myles) and kabuli type (FLIP 97-101C and 97-Indian2-11). Lentil flour was hydrolyzed more slowly and to a lesser extent than pea and chickpea flours. The amount of slowly digestible starch (SDS) in chickpea flour was the highest among the pulse flours, but the resistant starch (RS) content was the lowest. The eGI of lentil flour was the lowest among the pulse flours.  相似文献   

2.
Composition and properties of seeds and starches from five Virginia‐grown kabuli chickpea cultivars were investigated. The seeds had the average weight of 4.48 g per 10 g and volume of 641.2 mm3, and were rich in carbohydrate with starch as a principal constituent (59.2–70.9%). Resistant starch accounted for 7.7–10.4% of the total starch content. The composition and properties of the starches among the five cultivars were significantly different (≤ 0.05). All starches had a C‐type crystalline structure. The degree of crystallinity ranged from 21.1% to 27.4%, gelatinisation temperature from 7.97 to 11.2 °C and gelatinisation enthalpies from 2.18 to 3.76 J g?1, and water absorption capacities from 90.7% to 117.5%. Different shapes and granule sizes were observed. Molecular weight of amylopectin was in the range of 6.35 × 108–11.6 × 108 Da. Cultivar ‘HB‐14’ was superior to the other cultivars, when combining larger seed size, higher resistant starch level and better properties.  相似文献   

3.
This study investigated the impact of bioprocessing techniques (germination, solid-state fermentation, the combination of germination, and solid-state fermentation) on the physicochemical properties, anti-nutritional and bioactive constituents, in vitro digestibility, and techno-functional properties of whole wheat grains were investigated. Bioprocessed whole wheat flour (WWF) samples and the raw flour (control) were prepared using standard procedures. Proximate, anti-nutritional, mineral and amino acid (AA) compositions, protein digestibility, antioxidant activities, starch characteristics, and techno-functional properties were studied using standard methods. The bioprocessing methods increased (p ≤ 0.05) the protein (13.37–16.84 g/100 g), total dietary fiber, mineral constituents, resistant starch (7.19–9.87 g/100 g), slowly digestible starch, phenolic content, antioxidant activities (ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), most AAs, and protein digestibility. Also observed were decreases (p ≤ 0.05) in rapidly digestible starch, phytic acid, tannin, and trypsin inhibitor activity. The adopted bioprocessing techniques modified the thermal, functional, color, and pasting properties of the WWF and resulted in molecular interactions in some functional groups, as revealed by Fourier transform infrared spectroscopy, compared to the raw flour. The combination of germination and fermentation improved the physicochemical (titratable acidity = 4.93%), protein (16.84/100 g) and starch digestibility (resistant starch = 9.87%), antioxidant (FRAP = 78.90 mg/GAE/100 g), and mineral contents (calcium = 195.28 mg/100 g), modified the pasting (peak viscosity = 90.34 RVU), thermal (peak temperature = 64.82°C), and color properties of WWF with reduced anti-nutritional factors. The combination of these processing techniques could serve as a natural and low-cost technique for the modification of whole wheat functionality and subsequently as an improved functional ingredient during food product development.  相似文献   

4.
Physicochemical and nutritional properties of flour and isolated starch from eight Canadian lentil cultivars were assessed to identify unique samples and key factors affecting starch digestion. The results showed that nearly half of apparent amylose in lentil flours was underestimated because it was complexed and embedded within the flour matrix, which led to slower starch digestion of cooked flour. Cooked red lentil flours showed significantly higher resistant starch content (11.0%) than flours from green lentils (6.8%) (P < 0.05). Among green lentils, Asterix and Greenland were unique for their high slowly digestible starch content after cooking, possibly owing to their high phenolic content and α‐glucosidase inhibitory activity. Long‐ and short‐range ordering in starch was more indicative of low starch digestion for raw or cooked lentil flour rather than for isolated starch. The results suggest the flour matrix protects the starch ordered structure from enzyme hydrolysis.  相似文献   

5.
This research aimed to study physicochemical properties and in vitro digestibility of flours and starches from taro cultivated in different regions of Thailand, that is, Kanchanaburi (KB), Chiang Mai (CM), Phetchaburi (PB) and Saraburi (SB). Taro starches were extracted from taro flours using either water or alkaline extraction. The taro flours had significantly (P ≤ 0.05) larger particle size, higher pasting and gelatinisation temperatures, and resistant starch content but lower total starch content, whiteness (L* value), paste viscosities and clarity than their corresponding extracted starches. All the taro starches exhibited polygonal and irregular granules and gave A-type X-ray diffraction pattern. The alkaline-extracted taro starches had significantly (P ≤ 0.05) higher extraction yield, total starch content, L* value, pasting and gelatinisation temperatures, and paste clarity but lower granular size, amylose content, resistant starch content, paste viscosities and relative crystallinity than their water-extracted counterparts.  相似文献   

6.
Chickpea is an important food legume and is a major ingredient in many human diets. Chemical composition, physical parameters, functional properties and microstructural characteristics of three kabuli chickpea cultivars and the effects of three cooking methods were investigated. Carbohydrate and protein were two major components in all seeds. Cooking increased fibre, total carbohydrate and total and resistant starch contents, but decreased ash content. Protein and oil levels of the cooked samples either decreased or did not change significantly. Seed weight and density decreased with cooking. Hydration and swelling capacities as well as water absorption and holding capacities of cooked chickpeas were higher than raw samples, with the largest increases in the pressure‐cooked seeds. Seed weights were highly correlated with hydration (= 0.89) and swelling (= 0.76) rates. Emulsifying activity, emulsifying stability and foaming capacity of cooked chickpea flours decreased, while foaming stability increased. Chickpea flours had pronounced morphological changes after cooking.  相似文献   

7.
Hemp seed protein isolates (HPI) were extracted from seven commercial hemp cultivars, a Cornell breeding line, and a commercial hemp heart product, and their composition and functional properties were investigated. HPI contained different ratios of edestin, vicilin, and albumin proteins, which affected protein solubility and functionality. Higher protein solubility was associated with cultivars that contained more vicilin and albumin, which influenced the subsequent functional properties of HPI. Significant differences in water holding capacity (0.83–1.05 g water/g protein isolate), oil holding capacity (1.28–1.81 g oil/g protein isolate), foam capacity (52.9%–84.9%), and foam stability (68.1%–89.4%) were observed across HPI. The Cornell hemp breeding line exhibited the highest protein solubility at pH 7.0 and was uniquely capable of forming an emulsion. The relationship identified between hemp seed protein composition and functionality, in conjunction with the demonstration of an on-going hemp breeding line, suggest that continued, targeted development of hemp cultivars can improve its seed protein functional properties for ingredient utilization in plant-based foods.  相似文献   

8.
Commercially available gluten‐free (GF) cereal‐based foods are generally characterised by a lower nutritional quality than their gluten‐containing counterparts, relatively lower resistant starch (RS) content, along with higher glycaemic index (GI) often being reported. To overcome this nutritional imbalance, extensive research has been conducted to investigate the preparation of a new generation of staple GF products. This review reported the main strategies currently adopted in GF cereal‐based food recipes to formulate products with overall slowly digestible starch properties. They are mainly obtained by the utilisation of alternative ingredients to be incorporated into standard food formulation (including native starch and GF flours) or by technological treatments that may contribute to impact starch digestibility. Considering data from in vitro digestion trials, indications suggested that, aiming to obtain a RS content of about 5% (dry weight) and lowering the in vitro GI values, the minimum high amylose starch (amylose >60%) replacement level in GF bread and cookie formulations should be in the order of 20% by weight of total flours. Overall, with respect to un‐substituted GF foods, two‐ to three‐times higher RS contents, along with a parallel in vitro GI decrease (up to ?50%), were obtained for GF pasta and ready‐to‐eat snacks enriched with legume flours at inclusion levels from 40% to 100% by weight of total flours. The use of flours from pseudocereals (e.g., quinoa, amaranth and buckwheat) with and without sourdough did not always guarantee favourably slowly digestible starch GF foods.  相似文献   

9.
The development of gluten‐free spaghetti with a low amount of glycaemic carbohydrate was investigated. The goal of this study was to determine the chemical composition, cooking quality and starch digestibility of gluten‐free spaghetti elaborated with mixtures of chickpea, unripe plantain and maize flours. The gluten‐free spaghetti presented a higher protein, fat and ash content than the control semolina spaghetti. The solid loss among all the gluten‐free spaghetti was in the range of 10.04–10.91% and not significantly different from each other. These values were almost at the limit of acceptability to be considered as good cooking quality. Total starch in the gluten‐free spaghetti was lower than the control spaghetti. The lower available starch (AS) and higher resistant starch contents in the gluten‐free spaghetti were associated with their lower rate of hydrolysis and predicted glycaemic index. There is a potential for developing gluten‐free spaghetti with reduced amount of glycaemic carbohydrates from unconventional food ingredients such as chickpea, unripe plantain and maize flours.  相似文献   

10.
The present study examined how the alkaline cooking process affects the chemical, thermal and structural properties of the chickpea, evaluating different lime concentrations. Cooking was carried out at 94 °C, with two times of water for 15 min with five different lime concentrations. Regarding chemical composition, a decrease in protein and fat was observed: from 23.64% to a range of 18.26–19.93% for protein and from 8.20% to a range of 6.05–7.74% for fat. However, an increase was observed for ash and mineral content. The same pattern was observed for potassium. Raw chickpea did not present endotherm retrogradation, but a higher endotherm retrogradation was presented in chickpea cooked without lime, denoting that nixtamalisation decreased retrogradation. Additionally, V-amylose relative crystallinity increased with concentration of lime. Protein digestibility increases by β-sheet dismissing structure. Finally, it was observed that steeping time plays a key role in the nixtamalisation process.  相似文献   

11.
ABSTRACT

Five desi (PBG-1, PDG-4, PDG-3, GL-769, and GPF-2) and one kabuli type (L-550) chickpea cultivars were evaluated for their seed mass, volume, hydration capacity, swelling capacity, cooking time, and instrumental textural properties (hardness, cohesiveness, gumminess, and chewiness). Flour was prepared from these chickpea cultivars and various physicochemical and functional properties were determined. The pasting (pasting temperature, peak viscosity, breakdown, and final viscosity) and gelatinization (T o, T p, T c, and ΔH gel) properties of these flours were measured using Rapid Visco Analyzer (RVA) and Differential Scanning Calorimeter (DSC), respectively. Starch was also isolated from chickpea cultivars and evaluated for amylose content, swelling power, solubility, and syneresis values. Physicochemical, cooking, and instrumental textural properties of seeds of different chickpea cultivars were related to physicochemical, gelatinization, and pasting properties of their flours and physicochemical properties of their starches. Selected properties of chickpea seeds were significantly correlated with the properties of their starches and flours. Hardness value of soaked chickpea seeds was positively correlated to cooking time, seed mass, seed volume, hydration, and swelling capacity (p < 0.01). Water solubility index (WSI) of chickpea flours was positively correlated to seed mass, volume, hydration capacity, and hardness value (p < 0.05). Selected instrumental textural parameters of seeds had positive correlation with ΔH gel of flours (p < 0.01). Peak viscosity of flours showed positive correlation to breakdown, final viscosity, bulk density, and negative correlation to cohesiveness of soaked seeds (p < 0.01). Final viscosity showed negative correlation to bulk density and water absorption index (WAI) (p < 0.01) of flours.  相似文献   

12.
Five castrated male Iberian pigs (100 ± 2 kg mean live body weight) fitted with T‐shaped ileal cannulas were used to determine ileal digestibility of legume seed meals. The diets were based on defatted soybean (256 g kg?1), lupin (451 g kg?1) or chickpea (731 g kg?1) seed meals and contained similar amounts of digestible energy (14.2–15.1 kJ g?1) and protein (107 g kg?1). Only myristic acid (C14:0) ileal apparent digestibility was higher (p < 0.05) in lupin than in chickpea meal. Ileal apparent digestibility of unsaturated fatty acids (FA) (710–920 g kg?1) was higher (p < 0.05) than that of saturated (480–710 g kg?1) FA for both seed meals. Ileal digestibility of chickpea starch was 850 g kg?1. Ileal digestibility of oligosaccharides (sucrose, raffinose, stachyose, verbascose and ciceritol) in lupin (820 g kg?1) and chickpea (690 g kg?1) was higher (p < 0.05) than that of defatted soybean (510 g kg?1). However, total amounts of oligosaccharides digested were higher (p < 0.05) for lupin and chickpea meals (29.6 and 24.6 g kg?1 feed respectively) than for soybean (15.2 g kg?1 feed). Among individual non‐starch polysaccharide (NSP) sugars, ileal digestibility values for rhamnose and xylose in lupins were higher (p < 0.05) than those for soybean or chickpea. Ileal digestibility of lupin meal NSP (650 g kg?1) was higher (p < 0.05) than those of soybean (560 g kg?1) or chickpea (430 g kg?1). Up to the terminal ileum, higher (p < 0.05) amounts of lupin total NSP (94.1 g kg?1) than for soybean (24.3 g kg?1) or chickpea (27.1 g kg?1) were digested. Lactate, acetate and isobutyrate concentrations were higher (p < 0.05) in ileal contents of pigs fed lupin and chickpea seed meals compared with soybean‐fed animals. It is concluded that higher lactate and short chain fatty acids concentrations in ileal contents of pigs fed lupin or chickpea seed meals compared with soybean are likely to be the result of higher total amounts of lupin NSP and/or lupin and chickpea oligosaccharides digested up to the terminal ileum. This might have a protective effect on Iberian pig's intestinal physiology. Both lupin and chickpea meals are likely to constitute a valuable alternative to defatted soybean in Iberian pig feeding. Copyright © 2005 Society of Chemical Industry  相似文献   

13.
An increase in celiac consumers has caused an increasing interest to develop good quality gluten‐free food products with high nutritional value. Snack foods are consumed worldwide and have become a normal part of the eating habits of the celiac population making them a target to improve their nutritive value. Extrusion and deep‐frying of unripe plantain, chickpea, and maize flours blends produced gluten‐free snacks with high dietary fiber contents (13.7–18.2 g/100 g) and low predicted glycemic index (28 to 35). The gluten‐free snacks presented lower fat content (12.7 to 13.6 g/100 g) than those reported in similar commercial snacks. The snack with the highest unripe plantain flour showed higher slowly digestible starch (11.6 and 13.4 g/100 g) than its counterpart with the highest chickpea flour level (6 g/100 g). The overall acceptability of the gluten‐free snacks was similar to that chili‐flavored commercial snack. It was possible to develop gluten‐free snacks with high dietary fiber content and low predicted glycemic index with the blend of the 3 flours, and these gluten‐free snacks may also be useful as an alternative to reduce excess weight and obesity problems in the general population and celiac community.  相似文献   

14.
The effect of germination (G; 5 days), soaking‐cooking (SC; 6 h–20 min, 6 h–40 min, 6 h–60 min) and microwave (M; 50%, 70%, 100%) treatments on pigeon pea (PP), dolichos bean (DB) and jack bean (JB) seeds was studied. Microstructure of seeds and functional (protein solubility, water‐holding capacity, oil‐holding capacity, emulsion stability) and pasting properties of flours were determined. Germination and microwave treatments modified the protein matrix of cotyledon cells preserving the shape of the starch granule, whereas the SC treatment (6 h–60 min) affected both. The soaking‐cooking is the most influential treatment on the functional properties of PP, DB and JB flours, as increased water absorption capacity (73–96%), decreased protein solubility (>80%) and the tendency to retrogradation of amylose (69–85%) also improved emulsion stability.  相似文献   

15.
The seeds of two Amaranth species were studied. The starch contents were 543 and 623 g kg?1 while crude protein contents were 154 and 169 g kg?1 for Amaranthus caudatus and Amaranthus cruentus seeds, respectively. The effect of several treatments, including cooking, popping and germination and flour air classification on the protein and starch properties were studied. Air classification decreased the starch content and increased the protein content, while heating increased the protein but did not affect the starch content. Germination decreased both starch and protein contents. Amylose content was increased by air classification and heating, but was not affected by germination. It was found that all treatments increased the starch swelling power and reduced the falling number. The resistant starch content was increased in the high protein flour (HPF) fraction and germinated flour compared with the raw flour, while its content decreased in the heat treated seed flours. These processes also affected the starch gelatinization temperature and peak viscosity. The thermal properties of the starch flour were not affected by air classification while gelatinization energy was decreased significantly (by 52.0 and 90.0% and by 70.0 and 95.0%) in cooked and popped A caudatus and A cruentus seed flours, respectively. The gelatinization energy was highest in germinated seeds dried at 90 °C with values of 2.67 and 3.87 J g?1. Air classification reduced the level of all protein fractions. Thermal treatment decreased the water‐soluble fraction (albumins + globulins) and alcohol‐soluble fraction (prolamins) in both species. The levels of all fractions except the water‐soluble fraction (albumins + globulins) were reduced significantly in both species by germination, which mainly increased the amount of aspartic acid, serine and alanine, while the amounts of threonine, arginine and tyrosine decreased in both species. The polypeptide bands of the HPF in both species were unchanged compared with the raw seed flours, but more intensive coloured bands were observed. Thermal treatments eliminated major and minor bands above 35.0 KDa in both species. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Twenty chickpea cultivars were evaluated for genetic diversity in seeds (physical, hydration and cooking), flours (composition, pasting and gel textural) and starch (swelling, thermal, amylose content and amylopectin structure) properties. Frequency distribution and principal component analysis revealed significant differences among the cultivars studied. Pasting temperature, peak viscosity, breakdown, final viscosity and setback of flours ranged from 75.0 to 87.1 °C, 564 to 853 cP, 32 to 123 cP, 573 to 969 cP, and 84 to 185 cP, respectively. Amylose content of starch ranged from 28.26% to 52.82%. Amylopectin unit chains of DP 6–12, 13–18, 19–24 and 25–30 ranged from 36.2% to 43.25%, 36.44% to 38.68%, 14.86% to 18.22% and 4.95% to 6.9%, respectively. To establish the relationships between different properties Pearson correlation coefficients (r) were computed. Cluster analysis for grain and flour characteristics was also done to see the association between chickpea cultivars.  相似文献   

17.
Recent research has shown that pulse-derived ingredients present a technological alternative to cereals, higher protein and fibre content, and differentiated starch characteristics. In this work, the partial substitution of pulse flours with and without heat moisture treatment (HMT) was evaluated in a biscuit model. The digestion residues at 20 and 120 min that correspond to rapidly, slowly and resistant starch from the Englyst methodology were analysed by DSC, X-Ray and ATR-FTIR. The use of pulse flours in biscuits improved their thermal stability (ΔH = 3.01 and 4.99 J/g for control and Lentil + HMT), preserving a fraction of particularly ling glucans, that influenced the decreasing in the rapidly available starch from 55.26 to 24.11 % (Control and Faba bean + HMT), and enhanced its protein's digestibility from 75.26 to 87.43 % for the same sources. Among pulses, there were similarities regarding their resistance to enzymatic hydrolysis that may help select those with better organoleptic attributes.  相似文献   

18.
Some high yielding cultivars of chickpea (Kabuli and desi) (Cicer arietinum) and lentil (Lens esculenta) were used for chemical analysis and physico-chemical properties namely protein, fat, sugars, starch, in vitro digestibility of starch and protein; seed weight, seed volume, seed density, hydration capacity, swelling capacity, water absorption capacity and cooking time. Among chickpea, Gora Hisari (Kabuli) and Haryana Chana (desi) cultivars, and among lentil LH 82-6 cultivar manifested higher contents of protein, fat, sugars, starch and in vitro digestibility of starch and protein. Values of seed volume, seed density, hydration capacity, swelling capacity and water absorption capacity were also found higher for these cultivars which might have contributed towards less cooking time.  相似文献   

19.
BACKGROUND: Physical characteristics of chickpea (Cicer arietinum L.) seeds such as grain size, weight and hull content are important from a milling and marketing point of view. Chemical characteristics provide the information on nutritional status of grains. Chickpea of Desi (cv. A1) and Kabuli (cv. L550) cultivars were analyzed for their physicochemical, milling and milled flour quality characteristics. RESULTS: Between dry and wet milling, higher yield of dhal was obtained from wet milling, which was found to be true in both cultivars. An extra yield of 2–4% was obtained in wet milling. Between the cultivars, Desi was found to be the higher dhal‐yielding cultivar in both dry and wet milling methods. Fat, ash and protein contents were found to be higher in Kabuli than in Desi and the values were respectively 5.3%, 3.5% and 24.9% for Kabuli and 4.3%, 2.2% and 22.6% for Desi. CONCLUSION: The chickpea cultivars Desi and Kabuli vary significantly in their physical properties such as seed color, size, 100‐seed weight and 100‐seed volume. Between the dry and wet milling, a higher yield (2–4%) of dhal was obtained from wet milling. Between the cultivars, electronic nose analysis of chickpea flour indicated the possibility of differentiating the variations associated with varietal difference and milling. The gel electrophoresis pattern of chickpea showed as many as 15 protein bands in flours from both the cultivars, either in phosphate or SDS buffer. The Rapid Visco Analyzer profile did not show a significant difference between the two cultivars. Copyright © 2008 Society of Chemical Industry  相似文献   

20.
African traditional weaning foods are usually prepared from starchy flours at a total solids content of 50–100 g l?1, giving a viscosity of 1000–3000 cP which is consumable by infants. These porridges have very low energy and nutrient densities. Processing to reduce the porridge viscosity and improve the energy and nutrient density may help in solving this problem. Maize, kidney bean and their 70:30 composite flours were irradiated at 0–10 kGy at room temperature. Irradiation greatly reduced the viscosity of porridges, probably by starch depolymerisation. Irradiation improved the starch digestibility of raw bean flours, possibly either by inhibiting α‐amylase inhibitors or by weakening the thick cell walls that enclose the starch granules, thus improving accessibility to enzymes. However, in raw maize, cooked maize and cooked bean flours there was maximum starch digestibility at a dose of 2.5 kGy, followed by small but significant decreases in starch digestibility at higher doses, more so in maize than in bean flours. The decrease in digestibility could be due to the formation of inhibitors of amylolytic enzymes (Maillard reactions products) or to the formation of resistant starch. Irradiation doses required to increase the total solids content of traditional maize‐ and/or bean‐based weaning porridges to at least 200 g l?1 do not compromise starch digestibility significantly. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号