首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3D SiCf/BN–SiC/SiBCN composites were fabricated via precursor impregnation and polymer infiltration pyrolysis (PIP). Oxidation behavior of the composites heated in air at 800 °C, 1000 °C and 1200 °C for 50 h was investigated. Following the oxidation treatment, it was found that the bending strength of the composites at different oxidation temperatures was degraded. The weight loss of the composites decreased gradually over the range of oxidation times of 1–50 h. In order to clarify the oxidation mechanism of the composites, reconstructed images, microstructures, phase compositions, the oxide layer formed on the composites and main chemical reactions were all analyzed. It was revealed that the degradation in the fracture strength of the composites was closely related to the oxidation of SiBCN matrix and BN-SiC interphase, whereas there was no signs of oxidation products about SiC fiber, which indicated that SiC fiber could be protected from oxygen by SiBCN matrix at 800?1200 °C in air.  相似文献   

2.
In this work, Cf/SiBCN composites are fabricated by an improved precursor infiltration and pyrolysis (PIP) approach. Ablation behavior of the Cf/SiBCN composites is investigated in plasma ablation flame at a heat flux of 4.02 MW m−2, which provides a quasi-real hypersonic service environment at a temperature up to 2200°C. After ablation, the ablated surface is covered with oxidation products in the form of oxide layer, fibrous residues, or bubbles, which effectively isolates the sample surface from the plasma flame and inhibits the scouring of high-speed flame to the composites. As a result, the Cf/SiBCN composites present an excellent ablation-resistant property, with linear and mass recession rates as low as 0.0030 mm s−1 and 0.0539 mg mm−2 s−1, respectively. It is also revealed that the material at ablation center undergoes crystallization and oxidation processes during ablation, while the ablation behavior at transition area and ablation fringe only contains oxidation process due to the local temperature difference. Si3N4 and SiC grains are precipitated from amorphous SiBCN matrix during the crystallization process, and the oxidation process mainly involves the oxidation of carbon fiber and SiBCN matrix, etc.  相似文献   

3.
In order to improve the anti-oxidation performance of C/SiC composites at high temperature, C/SiC composites should be modified by self-healing components. SiBCN ceramic is an ideal self-healing component because of excellent oxidation resistance and thermal stability. C/SiC composites were modified by PDC SiBCN ceramic (C/SiC-SiBCN) by using CVI combined with polymer infiltration and on-line pyrolysis (PI-OP). The oxidation behaviors of C/SiC composites fabricated by CVI method and C/SiC-SiBCN composites fabricated by CVI + PI-OP method and CVI + PIP method at different temperatures in air were compared. The results showed that the strength retention ratios of the composites fabricated by the three methods decreased with the increase of temperature. Compared with the samples fabricated by the other two methods, the weight loss of the samples fabricated by CVI + PI-OP method was greater, but the strength retention ratio was higher.  相似文献   

4.
The oxidation behavior of SiC/BN/SiC ceramic matrix composites (CMCs) was evaluated from 400° to 800 °C in 100% O2 and 50% H2O/50% O2 gas mixtures. Thermogravimetric analysis (TGA) was utilized to measure weight change during controlled environment exposures at elevated temperatures for 1 and 50 hours. Oxidized CMCs and their oxides were studied post-exposure with scanning electron microscopy and energy dispersive spectroscopy. The oxidation onset and composition transition temperatures were evaluated. Key observations include oxide composition, oxide wetting, oxygen solubility in Hi-Nicalon SiC fibers and BN fiber coating oxidation and volatility behavior as a function of temperature. Degradation in wet environments at 600 °C was most extensive due to the formation of a non-wetting, non-protective surface oxide, allowing oxidant access to the BN fiber coatings followed by oxidation and volatilization. Implications of the CMC oxidation behavior are discussed for CMCs in service.  相似文献   

5.
The influences of the SiC infiltration and coating on the compressive mechanical behaviours of 2D C/SiC composites were determined up to 1600 °C at 0.001 and 1000/s strain rates in argon and air. In addition, the failure mechanisms responsible for the compressive mechanical behaviours were elucidated through in-situ observation and micro-analysis-based methods. The 2D C/SiC composite compressive strength was highly sensitive to temperature, loading rate, and oxidation, and was enhanced by the change in the thermal residual stress and decreased by oxidation. In argon, because of the extra infiltrated SiC matrix, SiC treated 2D C/SiC specimens exhibited higher compressive strengths and lower strain rate sensitivity factors than SiC untreated 2D C/SiC specimens. The SiC coating effectively improved the oxidation resistance of the 2D C/SiC composites in air, regardless of the temperature, strain rate, and oxidative damage-which depends on SiC coating, strain rate, and temperature.  相似文献   

6.
Matrix modification is of great significance for the densification of CVI-SiC/SiC, as well as the improvement of self-healing and oxidation resistance. A eutectic component of Y2O3-Al2O3-SiO2 system modified with CaO (CYAS) was used in this study to modify SiC/SiC at 1400 °C. The oxidation behaviour of the composites was investigated under dry/water oxygen atmosphere at 900 °C and 1300 ℃. Compared to the relatively dense SiC/SiC, the modified SiC/SiC showed a slight increase in flexural strength and fracture toughness at room temperature, as well as a significant increase in oxidation resistance and densification. Our work provides a low-cost, simple-to-operate, short-cycle densification method for CVI-SiC/SiC composites that increases their oxidation resistance without compromising their mechanical properties at room temperature.  相似文献   

7.
SiC fiber reinforced SiC matrix (SiCf/SiC) composites prepared by chemical vapor infiltration are one of promising materials for nuclear fuel cladding tube due to pronounced low radioactivity and excellent corrosion resistance. As a structure component, mechanical properties of the composites tubes are extremely important. In this study, three kinds of SiCf preform with 2D fiber wound structure, 2D plain weave structure and 2.5D shallow bend-joint structure were deposited with PyC interlayer of about 150–200?nm, and then densified with SiC matrix by chemical vapor infiltration at 1050?°C or 1100?°C. The influence of preform structure and deposition temperature of SiC matrix on microstructure and ring compression properties of SiCf/SiC composites tubes were evaluated, and the results showed that these factors have a significant influence on ring compression strength. The compressive strength of SiCf/SiC composites with 2D plain weave structure and 2.5D shallow bend-joint structure are 377.75?MPa and 482.96?MPa respectively, which are significantly higher than that of the composites with 2D fiber wound structure (92.84?MPa). SiCf/SiC composites deposited at 1100?°C looks like a more porous structure with SiC whiskers appeared when compared with the composites deposited at 1050?°C. Correspondingly, the ring compression strength of the composites deposited at 1100?°C (566.44?MPa) is higher than that of the composites deposited at 1050?°C (482.96?MPa), with a better fracture behavior. Finally, the fracture mechanism of SiCf/SiC composites with O-ring shape was discussed in detail.  相似文献   

8.
Thermal fatigue behavior of two-dimensional carbon fiber reinforced SiC matrix composites fabricated by chemical vapor infiltration technique was investigated using an on-line quench method in controlled environments which simulated an aero-engine gas. A system of damage information acquisition (SDIA) was developed to study changes in electrical resistance of the C/SiC composites during their damage in dynamic testing. Damage to composites was assessed by the ultimate tensile strength (UTS) and SEM characterization. The results showed that: (1) under different atmosphere, the 2D-C/SiC composites subjected to thermal cycling behaved very differently and the most sensitive atmosphere was the wet oxygen; (2) external load could accelerate the degradation of the composites and changed the oxidation regimes of fibers; (3) the electrical resistance of the specimen could be detected on-line, stored in real time and analyzed reliably by the newly-developed SDIA; (4) 2D-C/SiC composites had an excellent thermal fatigue resistance in different environments.  相似文献   

9.
Biomorphic SiC composites were fabricated by infiltration of liquid Si into a preform fabricated from medium-density fiberboard (MDF). The phase compositions, microstructures, oxidation behaviors, and ablation properties of the composites were investigated. The composites were oxidized at elevated temperatures (up to 1450 °C) in air to study their oxidation behavior. Pores and cracks initially formed from the oxidation of residual carbon, followed by melting of residual Si. The ablation resistance of a composite was gauged using an oxy-acetylene torch. The formation of a SiO2 layer by the oxy-acetylene flame improved the ablation resistance because molten SiO2 spread over the ablated surface and partially sealed the pores, thus acting as an effective barrier against the inward diffusion of oxygen.  相似文献   

10.
《Ceramics International》2019,45(10):12764-12772
On account of the excellent oxidation resistance of precursor-derived SiBCN ceramics, carbon-fiber-reinforced SiBCN (C/SiBCN) composites are increasingly being used in high-temperature aerospace applications. However, very few studies have investigated the high-temperature oxidation behavior of C/SiBCN composites for their application to high-heat engines. Herein, C/SiBCN composites prepared by precursor infiltration and pyrolysis were tested in static air up to an oxidation temperature of 1700 °C. The composites’ structural evolution after oxidation and their potential oxidation mechanisms were investigated in detail. The carbon fibers were preferentially oxidized at temperatures in the range of 1200–1500 °C and completely oxidized at 1500 °C. The oxidation of the fibers at 1500 °C resulted in the formation of abundant oxygen channels and consequently a high oxide scale growth rate of 5–7 μm2 h−1 and a large mass loss of 54.6 wt%. At elevated temperatures in the range of 1600–1700 °C, a dense SiO2 oxide layer was formed by the sacrificial oxidation of the SiBCN matrix. The oxidation rate of the composites was therefore controlled by the diffusion rate of oxygen through the protective SiO2 oxide layer and the weight loss of the composites decreased to 28.6% after oxidation at 1600 °C for 60 min. The structural integrity of the composites was maintained after long-term oxidation at 1600 °C.  相似文献   

11.
A combination method of precursor infiltration and pyrolysis (PIP), chemical vapor infiltration (CVI) and liquid silicon infiltration (LSI) was proposed to prepare PIP-SiC modified C/C–SiC brake materials. The SiC ceramic matrix pyrolyzed by polymethysilane (PMS) homogeneously dispersed in the fiber bundles region, which improved the plough resistance of local C/C region and the wear resistance of C/C–SiC brake materials. When the braking speed rises to 28 m/s, the fluctuation range of friction coefficient was limited to 0.026. The linear wear rate of the as-prepared composites was could be ~50% less than that of C/C–SiC, when the braking speed was above 15 m/s (for instance, the wear rate of 1.02 μm/(side·cycle) at 28 m/s less than 2.02 μm/(side·cycle) of traditional C/C– SiC). The fading ratio D of CoF under wet conditions was ~11%. The results showed that introducing PIP-SiC could stabilize the braking process and effectively prolong the service life of C/C–SiC brake materials.  相似文献   

12.
《Ceramics International》2017,43(13):9934-9940
Continuous silicon carbide fiber–reinforced silicon carbide matrix (SiCf/SiC) composites have developed into a promising candidate for structural materials for high–temperature applications in aerospace engine systems. This is due to their advantageous properties, such as low density, high hardness and strength, and excellent high temperature and oxidation resistance. In this study, SiCf/SiC composites were fabricated via polymer infiltration and pyrolysis (PIP) with the lower–oxygen–content KD–II SiC fiber as the reinforcement; a mixture of 2,4,6,8–tetravinyl–2,4,6,8–tetramethylcyclotetrasiloxane (V4) and liquid polycarbosilane (LPCS), known as LPVCS, was used as the precursor; while pyrolytic carbon (PyC) was used as the interface. The effects of oxidation treatment at different temperatures on morphology, structure, composition, and mechanical properties of the KD–II SiC fibers, SiC matrix from LPVCS precursor conversion, and SiCf/SiC composites were comprehensively investigated. The results revealed that the oxidation treatment greatly impacted the mechanical properties of the SiC fiber, thereby significantly influencing the mechanical properties of the SiCf/SiC composite. After oxidation at 1300 °C for 1 h, the strength retention rates of the fiber and composite were 41% and 49%, respectively. In terms of the phase structure, oxidation treatment had little effect on the SiC fiber, while greatly influencing the SiC matrix. A weak peak corresponding to silica (SiO2) appeared after high–temperature treatment of the fiber; however, oxidation treatment of the matrix led to the appearance of a very strong diffraction peak that corresponds to SiO2. The analysis of the morphology and composition indicated cracking of the fiber surface after oxidation treatment, which was increasingly obvious with the increase in the oxidation treatment temperature. The elemental composition of the fiber surface changed significantly, with drastically decreased carbon element content and sharply increased oxygen element content.  相似文献   

13.
Isothermal tensile creep tests were conducted on 2D woven and laminated, 0/90 balanced melt infiltration (MI) SiC/SiC composites at stress levels from 48 to 138 MPa and temperatures to 1400°C in air. Effects of fiber architecture and fiber types on creep properties, influence of accumulated creep strain on in-plane tensile properties, and the dominant constituent controlling the creep behavior and creep rupture properties of these composites were investigated. In addition, the creep parameters of both composites were determined. Results indicate that in 2D woven MI SiC/SiC composites with Sylramic™-iBN or Hi-Nicalon™-S fibers, creep is controlled by chemical vapor infiltration (CVI) SiC matrix, whereas in 2D laminated MI SiC/SiC composites with Hi-Nicalon™-S fibers, creep is controlled by the fiber. Both types of composites exhibit significant variation in creep behavior and rupture life at a constant temperature and stress, predominantly due to local variation in microstructural inhomogeneity and stress raisers. In both types of composites at temperatures >1350°C, residual silicon present in SiC matrix to reacts with SiC fibers and fiber coating causing premature creep rupture. Using the creep parameters generated, the creep behaviors of the composites have been modeled and factors influencing creep durability are discussed.  相似文献   

14.
《Ceramics International》2023,49(13):21678-21687
Carbon fiber (CF) reinforced SiBCN composites were generally considered as key candidates for thermal protection under severe aerodynamic heating in aerospace due to their excellent high-temperature properties, but they were also faced with challenges in stably monitoring the structural integrity of themselves under extreme conditions. Herein, with the introduction of SiC coating, multifunctional CF-SiC/SiBCN composites were fabricated which integrated functions of the thermal protection and the structural health monitoring. Compared to the untreated CF/SiBCN composites, the stability of sensing of CF-SiC/SiBCN composites was greatly improved and the sensitivity of CF-SiC/SiBCN composites maintained at a high level with a gauge factor of 652.65. Furthermore, additional researches revealed that the CF-SiC/SiBCN composites enjoyed a high compressive strength (155.33 MPa), a light weight (1.07–1.61 g/cm3), and a relatively low thermal conductivity (4.02 W/(m·K)), which showed a potentiality of CF-SiC/SiBCN composites to be applied as multifunctional structural components in thermal protection systems.  相似文献   

15.
Three-dimensional carbon fiber reinforced silicon carbide (C/SiC) composites were fabricated by precursor infiltration and pyrolysis (PIP) with polycarbosilane as the matrix precursor, SiC coating prepared by chemical vapor deposition (CVD) and ZrB2-SiC/SiC coating prepared by CVD with slurry painting were applied on C/SiC composites, respectively. The oxidation of three samples at 1500 °C was compared and their microstructures and mechanical properties were investigated. The results show that the C/SiC without coating is distorted quickly. The mass loss of SiC coating coated sample is 4.6% after 2 h oxidation and the sample with ZrB2-SiC/SiC multilayer coating only has 0.4% mass loss even after oxidation. ZrB2-SiC/SiC multilayer coating can provide longtime protection for C/SiC composites. The mode of the fracture behavior of C/SiC composites was also changed. When with coating, the fracture mode of C/SiC composites became brittle. When after oxidation, the fracture mode of C/SiC composites without and with coating also became brittle.  相似文献   

16.
《Ceramics International》2017,43(11):8208-8213
In order to improve the oxidation behavior of carbon/carbon composites in a wide range of temperature, a new SiC/glaze-precursor coating was developed.The SiC layer was produced by slurry and sintering, while the glaze precursor layer was prepared by slurry and drying. The microstructures and phase compositions of the coating were analyzed by SEM and XRD, respectively. The oxidation resistance of the coated composites was investigated using both isothermal and temperature-programmed thermogravimetric analysis in the temperature range from room temperature to 1600 °C. The results showed that the oxidation behavior of the coating was mainly controlled by the diffusion of oxygen during the test.The coating showed excellent oxidation resistance and self-healing ability in a wide range of temperature.  相似文献   

17.
The influence of high-temperature argon heat-treatment on the microstructure and room- temperature in-plane tensile properties of 2D woven CVI and 2D unidirectional MI SiC/SiC composites with Hi-Nicalon?-S SiC fibers was investigated. The 2D woven CVI SiC/SiC composites were heat-treated between 1200 and 1600 °C for 1- and 100-hr, and the 2D unidirectional MI SiC/SiC composites between 1315 and 1400 °C for up to 2000 hr. In addition, the influence of temperature on fast fracture tensile strengths of these composites was also measured in air. Both composites exhibited different degradation behaviors. In 2D woven CVI SiC/SiC composites, the CVI BN interface coating reacted with Hi-Nicalon?-S SiC fibers causing a loss in fast fracture ultimate tensile strengths between 1200 and 1600 °C as well as after 100-hr isothermal heat treatment at temperatures > 1100 °C. In contrast, 2D unidirectional MI SiC/SiC composites showed no significant loss in in-plane tensile properties after the fast fracture tensile tests at 1315 °C. However, after isothermal exposure conditions from 1315° to 1400°C, the in-plane proportional limit stress decreased, and the ultimate tensile fracture strain increased with an increase in exposure time. The mechanisms of strength degradation in both composites are discussed.  相似文献   

18.
《Ceramics International》2016,42(14):15479-15484
Oxidation behaviour of two-dimensional (2D) C/SiC composites with 0, 1 and 2 mm average diameter holes has been investigated in air at 700 °C. Oxidation tests, mechanical tests, microstructural characterization and computed tomography (CT) were performed to find the effect of hole defects on the oxidation behaviour of C/SiC composites. The experimental results pointed out that the thermal exposure area (TEA) ratio and oxidation time were two key affecting factors on the oxidation behaviour. Weight loss was found to accelerate at oxidation durations higher than 1 h, thereafter residual tensile strength also dropped. A TEA ratio of 16% was found as critical in severely downgrading the residual tensile strength and significantly weakening the oxidation resistance behaviour for C/SiC composites contain hole defects.  相似文献   

19.
Oxidation protective SiC nanowires‐reinforced SiC (SiCNWs‐SiC) coating was prepared on pack cementation (PC) SiC‐coated carbon/carbon (C/C) composites by a simple chemical vapor deposition (CVD) process. This double‐layer SiCNWs‐SiC/PC SiC‐coating system on C/C composites not only has the advantages of SiC buffer layer but also has the toughening effects of SiCNWs. The microstructure and phase composition of the nanowires and the coatings were examined by SEM, TEM, and XRD. The single‐crystalline β‐SiC nanowires with twins and stacking faults were deposited uniformly and oriented randomly with diameter of 50‐200 nm and length ranging from several to tens micrometers. The dense SiCNWs‐SiC coating with some closed pores was obtained by SiC nanocrystals stacked tightly with each other on the surface of SiCNWs. After introducing SiCNWs in the coating system, the oxidation resistance is effectively improved. The oxidation test results showed that the weight loss of the SiCNWs‐SiC/PC SiC‐coated samples was 4.91% and 1.61% after oxidation at 1073 K for 8 hours and at 1473 K for 276 hours, respectively. No matter oxidation at which temperature, the SiCNWs‐SiC/PC SiC‐coating system has better anti‐oxidation property than the single‐layer PC SiC coating or the double‐layer CVD SiC/PC SiC coating without SiCNWs.  相似文献   

20.
Fatigue resistance and damage mechanisms of 2D woven SiC/SiC composites at high temperatures were investigated in this research. Fatigue behavior tests were performed at 1200℃ and 1000°C at 10 Hz and stress ratio of 0.1 for maximum stresses ranging from 80 to 120 MPa, and the fatigue run-out could be defined as 106 cycles. Evolution of the cumulative displacement and normalized modulus with cycles was analyzed for each fatigue condition. Fatigue run-out was achieved at 80 MPa and 1000°C. It could be found that the cycle lifetimes of the composites decreased sharply with the increasing maximum stress and temperature conditions significantly affected the fatigue performance under matrix cracking stress. The cumulative displacement showed no noticeable increase before 1000 cycles and the modulus of the failed specimens decreased before fracture. The retained properties of composites that achieved fatigue run-out, as well as the microstructures, were characterized in order to understand the fatigue behavior and failure mechanisms. The composites exhibited similar fracture morphology with matrix crack extension and glass phase oxidation formation under different conditions. In general, the high-temperature fatigue damage and failure of composites could be affected by combination of stress damage and oxidative embrittlement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号