首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A high-pressure FAST/Spark Plasma Sintering method was used to produce dense SrTiO3 ceramics at temperatures of 1050 °C, more than 250 °C below typical sintering temperatures. Combining SPS with solid-state reactive sintering further improves densification. The process resulted in fine-grained microstructures with grain sizes of ∼300 nm. STEM-EDS was utilized for analyzing cationic segregation at grain boundaries, revealing no cationic segregation at the GBs after SPS. Electrochemical impedance spectroscopy indicates the presence of a space charge layer. Space charge thicknesses were calculated according to the plate capacitor equation and the Mott-Schottky model. They fit the expected size range, yet the corresponding space charge potentials are lower than typical values of conventionally processed SrTiO3. The low space charge potential was associated to low cationic GB segregation after SPS and likely results in better grain boundary conductivity. The findings offer a path to tailor grain boundary segregation and conductivity in perovskite ceramics.  相似文献   

4.
The SEraMic method, implemented in the SEraMic plugin for Fiji or ImageJ software, was developed to calculate a segmented image of a ceramic cross section that shows the grain boundaries. This method was used to accurately and automatically determine grain boundary positions and further assess the grain size distribution of monophasic ceramics, metals, and alloys. The only required sample preparation is polishing the cross section to a mirror-like finish. The SEraMic method is based on at least six backscattered electron scanning electron microscopy images of a unique region of interest with various tilt angles ranging from -5° to +5°, which emphasises the orientation contrasts of the grains. Because the orientation contrast varies with the incident beam angle on the sample, the set of images contains information related to all the grain boundaries. The SEraMic plugin automatically calculates and builds a segmented image of the grain boundaries from the set of tilted images. The SEraMic method was compared with classical thermal etching methods, and it was applied to determine the grain boundaries in various types of materials (oxides, phosphates, carbides, and alloys). The method remains easy to use and accurate when the average grain diameter is greater than or equal to 0.25 μm.  相似文献   

5.
Two types of chemically pristine polycrystalline cubic boron nitrides (c-BN) are sintered at different conditions using the starting cubic and hexagonal BN powders and their microstructures and grain boundaries are investigated systematically by transmission electron microscopy. The two c-BN samples are found to exhibit a number of twins inside their grains and have a similar grain size, despite their huge differences in the grain size of the starting powders and sintering conditions. Twin width for the c-BN sintered from hexagonal BN is significantly smaller than that for the c-BN sintered from c-BN. Grain boundaries in the two samples can be atomically abrupt without any amorphous or secondary layers and oxygen is detected merely at the grain boundaries of the c-BN sintered from the c-BN powders. Such microstructural differences have a direct impact on mechanical behaviors of the c-BN, as the Vickers hardness of the c-BN sintered from hexagonal BN powders is found to be higher than that of the c-BN sintered from the c-BN powders.  相似文献   

6.
Calcium zirconate-based protonic conductors are currently the most promising electrolyte for high-temperature hydrogen sensors, however, protonic conductors exhibit mixed protons, oxygen vacancies and electron-holes conduction above 700°C, and the protons transport number is significantly influenced by the atmosphere. Therefore, the relationship between protons transport number and oxygen/water vapor partial pressure should be established to improve the veracity of the hydrogen sensor. Herein, CaZr0.9Sc0.1O3-α perovskite oxides are prepared and the influence of grain interior and grain boundaries on transport properties is systematically investigated by using with defect chemistry theory. And the relationship between protons transport number and oxygen/water vapor partial pressure should be obtained. The results indicate that the dominant conduction carriers of CaZr0.9Sc0.1O3-α were protons in Ar and reductive atmospheres at 500°C-800°C, and the conductivity () and transport number () of holes are remarkably increased with increasing oxygen partial pressure. In addition, protons, oxygen vacancies and electron-holes transport properties of grain interior and grain boundaries in scandium-doped calcium zirconate reveal that grains can effectively block oxygen vacancies transport at 550°C-800°C, but grains cannot block the holes transport. Therefore, the oxygen vacancies trend to transport through grain boundaries.  相似文献   

7.
AC electrical response of polycrystalline diamond films, prepared by hot-filament assisted chemical vapor deposition technique, was studied by admittance spectroscopy. Temperature dependent admittance evidenced two main exponential regimes associated with distributions of traps within diamond grains and at grain boundaries, respectively. Activation energies of the low-frequency conductance and of the characteristic relaxation frequency from Jonscher equation also evidence two trap levels associated to grain and grain boundary. This picture is supported by capacitive contributions obtained from imaginary part of electric modulus spectra, furthermore suggesting the presence of charge carriers tunneling at the Fermi level. Results are discussed in terms of a schematic band energy diagram.  相似文献   

8.
In the case of FeNiCr alloys (without precipitation), we propose an electrochemical method which allows us to obtain a reproducible selective corrosion of grain boundaries (H2SO4-2N-25°C in the transpassive domain). We establish a model of dissolution to explain the morphology of etched grooves. From this model we deduce a parameter α0 which characterizes the intergranular corrosion susceptibility of a given alloy.Electrochemical kinetic allows us to calculate the ratio of the density of active sites at the emergence of the grain boundary and on the surface of the grain. This electrochemical method permits us to study the effects of the segregation phenomena, of composition alloy and of grain boundary structure on intergranular corrosion.  相似文献   

9.
We investigate the ultimate strengths and failure types of asymmetric tilt grain boundaries (GBs) with various tilt angles with the aid of molecular dynamics simulations and analytic theory. The tensile strength of armchair-oriented graphene GBs shows a tendency to increase as the misorientation angle rises, while that of zigzag-oriented graphene GBs non-monotonically increases. The overall strength enhancement and weakening behaviors can be explained by a continuum stress analysis of pentagon–heptagon defects along GBs. Nevertheless, full atomistic analyses are required to predict the exact bonds from which mechanical failure initiate. Two different fracture types are observed in our studies; one with cracks growing along the GB and another with cracks growing away from the GB. Detailed understanding of the atomic arrangement along the GB, in addition to defect density, is necessary to ascertain the ultimate strength and rupture process of GBs.  相似文献   

10.
The Orowan-Petch relation is a famous model to describe the strength of polycrystalline ceramics covering a wide range of grain sizes. However, it becomes difficult to explain the strength trend when the grain size decreases to the sub-microscale or nanoscale. This is because some microstructural parameters (such as grain size, grain boundary fracture energy, and grain boundary defects) vary with different processing technologies, and their coupling effects on mechanical properties are still unclear. In this study, a finite element method (FEM) was applied to investigate the dependence of mechanical properties, such as strength and damage resistance, on the abovementioned microstructural parameters on example of alumina. The numerical results show that the grain boundary energy is weakly coupled with the grain size and grain boundary defects. The grain size and grain boundary are intercoupling, which affects mechanical properties. The mechanical properties could be improved by increasing the grain boundary fracture energy and decreasing the grain size and the grain boundary defect density.  相似文献   

11.
12.
Grain boundaries (GBs) in graphene can migrate when irradiated by electron beams from a transmission electron microscope (TEM). Here, we present an ab initio study on the atomic scale-mechanism for motion of GB with misorientation angle of ∼30° in graphene. From total energy calculations and energy barrier calculations, we find that a Stone–Wales (SW)-type transformation can occur more easily near GBs than in pristine graphene due to a reduced energy barrier of 7.23 eV; thus, this transformation is responsible for the motion of GBs. More interestingly, we find that a mismatch in the crystalline orientation at GBs can drive the evaporation of a carbon dimer by greatly reducing the corresponding overall energy barrier to 11.38 eV. After evaporation of the carbon dimer, the GBs can be stabilized through a series of SW-type transformations that result in GB motion. The GB motion induced by evaporation of the dimer is in excellent agreement with recent TEM experiments. Our findings elucidate the mechanism for the dynamics of GBs during TEM experiments and enhance the controllability of GBs in graphene.  相似文献   

13.
Various mechanical characteristics of tilted and non-tilted grain boundaries in graphene were investigated under tension and compression in directions perpendicular and parallel to the grain boundaries using molecular dynamics simulation. In contrast to the non-tilted grain boundary and the pristine graphene, the mechanical response of tilted grain boundary was observed to be quite unique under perpendicular tension, exhibiting distinct crack propagation prior to tensile failure and the subsequent pattern of incomplete fracture. These features are manifested as a remarkable decrease in the slope and a rugged pattern in the stress–strain curves. The characteristic of incomplete fracture was striking especially for large misorientation angles with formation of long monoatomic carbon chains, suggesting a methodology for feasible production of the monoatomic carbon chains that have been difficult to synthesize and extract. Under perpendicular compression, the folding of the sheet occurred consistently along grain boundaries during the entire process, indicating a tunable folding, while the folding line wandered extensively for pristine graphene. Under parallel compression, we found that folding along grain boundaries disturbed the bending of the graphene substantially for intrinsic reinforcement.  相似文献   

14.
In this article, we have investigated local field electron emission from grain boundaries of diamond films with (100) preferential orientation by double-probe scanning electron microscopy (SEM). Compared with the field emission from the plane area of diamond film, local field emission from grain boundary area is greatly enhanced at the same applied field, and further increased with the increasing of grain boundary number density. This result provides a direct evidence that grain boundary plays an important role in field emission from diamond film because a great deal of sp2 graphitic carbon phases exists in grain boundary areas as electron transport channels for the surface field emission process.  相似文献   

15.
Doped CeGdO and codoped CeGdOSmO compositions were synthesized, giving rise to nanoparticulate powders. Ionic conductivities at bulk and grain boundaries of the sintered samples were determined, exhibiting increased conductivity in the samaria-codoped samples. Scanning electron microscopy (SEM) showed a significant reduction in the grain size of samaria-codoped electrolytes. This reduced grain size of the codoped samples caused a reduction in Schottky barrier height, increasing oxygen vacancy concentration in the space-charge layer of the grain boundary and culminating in greater ionic conductivity in the boundary region. For the gadolinium doped samples, high resolution transmission electron microscopy images at grains showed the presence of large cluster of defects (nanodomains), hindering the movement of charge carriers and reducing ionic conductivity. However, the samaria-codoped system displayed better homogeneity at atomic level, resulting in reduced oxygen vacancy ordering and, consequently, smaller nanodomains and higher bulk (grain) conductivity. The reduced grain sizes and smaller nanodomains caused by codoping favor the ionic conductivity of ceria-based ceramics, doped with gadolinia and codoped with samaria.  相似文献   

16.
17.
The graphene grain boundaries with periodic length up to 18 Å have been studied using density functional theory. Atomic structures, thermodynamic stabilities and electronic properties of 40 grain boundaries with symmetric and nonsymmetric structures were investigated. According to the arrangements of pentagons and heptagons on the boundary, grain boundaries were cataloged into four classes. Some nonsymmetric grain boundaries constructed here have identical misorientation angles to the experimentally observed ones. The formation energies of grain boundaries can be correlated with the misorientation angle and inflection angle. Nonsymmetric grain boundaries possess comparable formation energies to their symmetric counterparts when the periodic length along the defect line is larger than 1 nm. Analysis of electronic density of states shows that the existence of a grain boundary usually increases the density of states near the Fermi level, whereas some symmetric grain boundaries can open a small band gap due to local sp2-to-sp3 rehybridization.  相似文献   

18.
The influence of CaO on the evolving microstructure of alumina has been studied in a range of concentrations below the solubility limit. The amount of Ca in the alumina was determined by conducting fully standardized wavelength dispersive spectroscopy, and the change in grain boundary mobility as a function of the amount of dopant was characterized using scanning electron microscopy. Unlike segregating dopants which reduce grain boundary mobility by solute-drag, CaO increases the rate of grain growth, and a trend of increased mobility with increasing dopant level was shown. The increased mobility with Ca segregation is believed to be due to an increase in vacancy concentration in the vicinity of the grain boundaries, thus facilitating faster grain boundary motion.  相似文献   

19.
The molecular-dynamic modeling of the behavior of a three-dimensional crystallite that contains a specific-type grain boundary under shear loading is performed. It is found that the accommodation of displacements of the material grains can be realized owing to structural changes in the intergrain boundaries. The crystal-like structure of the grains can be restored after the external action terminates. The results obtained give deeper insight into the nature of the structural response of the material under mechanical loading at the atomic level. Translated fromFizika Goreniya i Vzryva, Vol. 35, No. 6, pp. 112–114, November–December 1999.  相似文献   

20.
Grain boundaries (GBs) as typical defective graphene structure have significant influence on its mechanical properties. The fracture strength of hydrogenated graphene with tilt GBs composed of pentagon–heptagon defects are systematically investigated using classical Molecular Dynamics (MD) method. Anomalous mechanical characteristics are revealed for graphene with hydrogenation either on or near the GBs. For graphene sheets with hydrogenation on tilt GBs under perpendicular pulling, the strength of hydrogenated GBs with large tilt angle is anomalously stronger than low-angle tilt boundary having fewer defects because of the interaction between polar stress fields of hydrogenated pentagon–heptagon defects. For graphene with hydrogenation near the GBs, the interaction between GBs and hydrogenated domains at different distance intervals is investigated. The strength is found to be governed by the peak normal stress in hydrogenated domain, and an exponential relationship between the normal strength and distance interval is revealed as a result of the stress field overlap between GB and hydrogenation interface. Our results gain meaningful insight into the effects of hydrogenation on the strength of graphene with tilt GBs, and provide guidelines for designing high-quality hydrogenated graphene-based nanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号