首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum oxynitride (AlON) ceramics doped with different sintering aids were synthesized by spark plasma sintering process. The microstructures, mechanical, and optical properties of the ceramics were investigated. The results indicate that the optimal amount of sintering aids is 0.06 wt% La2O3 + 0.16 wt% Y2O3 + 0.30 wt% MgO. The addition of La3+ and Mg2+ decreases the rate of grain boundary migration in ceramics, promotes pore elimination, and inhibits grain growth. The addition of Y3+ facilitates liquid-phase sintering of AlON ceramics. Moreover, the addition of Mg2+ effectively promotes twin formation in the ceramics, which hinders crack propagation and dislocation motion when the ceramics are loaded. Hence, the AlON ceramic doped with 0.06 wt% La2O3 + 0.16 wt% Y2O3 + 0.30 wt% MgO exhibits a relative density of 99.95%, an average grain size of 9.42 μm, and a twin boundary content of 10.3%, which contributes to its excellent mechanical and optical properties.  相似文献   

2.
Effects of treatment modes of precipitates in the coprecipitation method on the resulting YAG nanopowders and ceramics are investigated. Three treatment modes for precipitates, namely, single water washing, water–ethanol washing, and water washing–ethanol immersion, are conducted to prepare the YAG nanopowders. The average particle size (∼62 nm) and distribution (mainly ranging from 30 to 110 nm) of the powders obtained by the three modes are similar. However, the dispersity of the three powders shows large differences. The nanopowder obtained via water washing–ethanol immersion possesses optimal dispersity without any agglomeration, whereas that obtained via single water washing comprises substantially hard agglomerations. The relative density, Vickers hardness, and optical in-line transmittance of the ceramics prepared via water washing–ethanol immersion, respectively, reach 99.85%, 14.1 ± .4 GPa, and 77.8% at 1064-nm wavelengths after spark plasma sintering. These results are markedly superior to those of the ceramics prepared using the two other modes (97.43%, 6.8 ± .7 GPa, and 17.2% at 1064-nm wavelengths and 98.97%, 10.2 ± .5 GPa, and 47.8% at 1064-nm wavelengths, correspondingly). Therefore, water washing–ethanol immersion is a sensible and advisable treatment mode of precipitates for preparing YAG nanopowder and ceramics via coprecipitation.  相似文献   

3.
Transparent MgO ceramics are successful fabricated via spark plasma sintering at lower temperature using the high sintering activity powders synthesized by precipitated method. The samples were detected by XRD, SEM, TEM, BET, UV-Vis-NIR, microhardness, and so on. The results show that all ceramics prepared at 700°C-900°C are visually transparent and the sample sintered at 860°C for 5 min exhibits the superior transmittance of 60% (800 nm). It is also found that the mechanical and thermal properties of MgO ceramics are all increasing firstly and then decreasing with the increase in the sintering temperature. And the maximum value of hardness, fracture toughness, MSP strength, and Young's modulus of MgO ceramics is 8.25 GPa, 2.01 MPa·m1/2, 206 MPa, and 286 GPa, respectively. Moreover, the thermal conductivity of MgO ceramics sintered at 860°C can reach 48.4 W/mK at room temperature.  相似文献   

4.
采用传统的机械合金(MA)和放电等离子体烧结(SPS)工艺成功制备了Fe-(9~11)Cr二元合金及纳米氧化物弥散强化(ODS)合金,利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)对MA粉末的形貌和物相进行分析,用能量色散谱(EDS)、显微维氏硬度仪、光学显微镜、透射电子显微镜(TEM)对合金样品进行表征。结果表明,在转速为300 r/min,球料比为10:1的条件下,MA粉末受到磨球与罐子内壁的撞击,晶粒尺寸不断细化,在40 h粉末晶粒尺寸减小至约16.1 nm趋于稳定。SPS烧结后晶粒尺寸无明显增大,各微量元素均匀分布在基体中。二元合金样品的维氏硬度随Cr含量增加而增大。10CrY合金样品经腐蚀液侵蚀后可粗略看到晶界呈均匀分布。ODS合金样品存在大量的纳米析出相,平均颗粒尺寸约30 nm。  相似文献   

5.
Fully dense MgB2 bulk specimens (∼higher than 99% dense) were prepared using spark plasma sintering (SPS) at 1250°C for 15 min. Microstructure analyses revealed that faceted MgO particles of ∼8% volume fraction were dispersed in the MgB2 matrix. A sharp superconducting transition with an onset temperature of 38.5 K was confirmed by both magnetization and resistivity measurements.  相似文献   

6.
Nitrogen (N)-doped conductive silicon carbide (SiC) of various electrical resistivity grades can satisfy diverse requirements in engineering applications. To understand the mechanisms that determine the electrical resistivity of N-doped conductive SiC ceramics during the fast spark plasma sintering (SPS) process, SiC ceramics were synthesized using SPS in an N2 atmosphere with SiC powder and traditional Al2O3–Y2O3 additive as raw materials at a sintering temperature of 1850–2000°C for 1–10 min. The electrical resistivity was successfully varied over a wide range of 10−3–101 Ω cm by modifying the sintering conditions. The SPS-SiC ceramics consisted of mainly Y–Al–Si–O–C–N glass phase and N-doped SiC. The Y–Al–Si–O–C–N glass phase decomposed to an Si-rich phase and N-doped YxSiyCz at 2000°C. The Vickers hardness, elastic modulus, and fracture toughness of the SPS-SiC ceramics varied within the ranges of 14.35–25.12 GPa, 310.97–400.12 GPa, and 2.46–5.39 MPa m1/2, respectively. The electrical resistivity of the obtained SPS-SiC ceramics was primarily determined by their carrier mobility.  相似文献   

7.
Spark plasma sintering (SPS) is an advanced sintering technique because of its fast sintering speed and short dwelling time. In this study, TiB2, Y2O3, Al2O3, and different contents of B4C were used as the raw materials to synthesize TiB2-B4C composites ceramics at 1850°C under a uniaxial loading of 48 MPa for 10 min via SPS in vacuum. The influence of different B4C content on the microstructure and mechanical properties of TiB2-B4C composites ceramics are explored. The experimental results show that TiB2-B4C composite ceramic achieves relatively good comprehensive properties and exceptionally excellent flexural strength when the addition amount of B4C reaches 10 wt.%. Its relative density, Vickers hardness, fracture toughness, and flexural strength reach to 99.20%, 24.65 ± .66 GPa, 3.16 MPa·m1/2, 730.65 ± 74.11 MPa, respectively.  相似文献   

8.
A novel high‐entropy carbide ceramic, (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C, with a single‐phase rock salt structure, was synthesized by spark plasma sintering. X‐ray diffraction confirmed the formation of a single‐phase rock salt structure at 26‐1140°C in Argon atmosphere, in which the 5 metal elements may share a cation position while the C element occupies the anion position. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C exhibits a much lower thermal diffusivity and conductivity than the binary carbides HfC, ZrC, TaC, and TiC, which may result from the significant phonon scattering at its distorted anion sublattice. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C inherits the high elastic modulus and hardness of the binary carbide ceramics.  相似文献   

9.
Investigated was the spark plasma sintering (SPS) of sialon ceramics from SHS-produced powders. Experimentally established were (a) sintering temperatures that ensure a required density, phase composition, and microstructure of sintered multicomponent sialon ceramics, (b) individual stages of the SPS process, and (c) the effect of starting powder composition on the phase composition and microstructure of sintered sialon ceramics.   相似文献   

10.
Translucent AlN ceramics with 0‐2 wt.% MgF2 additive were prepared by spark plasma sintering. AlN powder was heated temporarily up to 2000°C, before holding at 1850°C for 20 minutes in N2 gas. The sintered ceramics consisted of a single phase of hexagonal AlN, and showed a transgranular fracture mode. The total transmittance was improved remarkably by the additive, to reach 74% at a wavelength of 800 nm for 1 wt.% MgF2. For 2 wt.% MgF2, the transmittance was slightly lower than that for 1 wt.% MgF2, and an absorption band was observed apparently at around 400 nm. The addition of MgF2 along with the temporary heating at higher temperatures than the sintering temperature contributed to improve the transmittance remarkably.  相似文献   

11.
Processing of dense high-entropy boride ceramics   总被引:1,自引:0,他引:1  
Dense (Hf0.2,Zr0.2,Ti0.2,Ta0.2,Nb0.2)B2 high-entropy ceramics with high phase purity were produced by two-step spark plasma sintering of precursor powders synthesized by boro/carbothermal reduction of oxides. The reacted powders had low oxygen (0.404 wt%) and carbon (0.034 wt%) contents and a sub-micron average particle size (∼0.3 μm). Powders were synthesized by optimizing the excess B4C content of the reaction mixture and densified by a two-step spark plasma sintering process. The relative density increased from 98.9% to 99.9% as the final sintering temperature increased from 2000 °C to 2200 °C. The resulting ceramics were nominally single-phase (Hf,Zr,Ti,Ta,Nb)B2 with oxygen contents as low as 0.004 wt% and carbon as low as 0.018 wt%. The average grain size increased from 2.3 ± 1.2 μm after densification at 2000 °C to 4.7 ± 1.8 μm after densification at 2100 °C, while significant grain growth occurred during sintering at 2200 °C. The high relative densities, low oxygen and carbon contents, and fine grain sizes achieved in the present study were attributed to the use of synthesized precursor powders with high purity and fine particle size, and the two-step synthesis-densification process. These are the first reported results for dense high-entropy boride ceramics with high purity and fine grain size.  相似文献   

12.
A fully dense SiC ceramic with a room‐temperature thermal conductivity of 262 W·(m·K)?1 was obtained via spark plasma sintering β‐SiC powder containing 0.79 vol% Y2O3‐Sc2O3. High‐resolution transmission electron microscopy revealed two different SiC‐SiC boundaries, that is, amorphous and clean boundaries, in addition to a fully crystallized junction phase. A high thermal conductivity was attributed to a low lattice oxygen content and the presence of clean SiC‐SiC boundaries.  相似文献   

13.
Si3N4 ceramics were prepared by hot pressing (HP) and spark plasma sintering (SPS) methods using low content (5 mol%) Al2O3–RE2O3(RE = Y, Yb, and La)–SiO2/TiN as sintering additives/secondary additives. The effects of sintering additives and sintering methods on the composition, microstructures, and mechanical properties (hardness and fracture toughness) were investigated. The results show that fully density Si3N4 ceramics could be fabricated by rational tailoring of sintering additives and sintering method, and TiN secondary additive could promote the density during HP and SPS. Besides, SN-AYS-SPS possesses the most competitive mechanical properties among all the as-prepared ceramics with the Vickers hardness as 17.31 ± .43 GPa and fracture toughness as 11.07 ± .48 MPa m1/2.  相似文献   

14.
α/β-SiAlON/SiC composite ceramic tool materials were prepared via spark plasma sintering. The effects of content and size of SiC particles and sintering temperature on phase composition, mechanical properties, and microstructure were investigated. The results indicated that SiC restrained the transformation of β-SiAlON to α-SiAlON, but higher SiC content (≥10 wt.%) resulted in a higher Vickers hardness of the composite. The large size of SiC particles raised the densification temperature of α/β-SiAlON composites, and small SiC particles benefited to improve microstructure. There were more equiaxed α-SiAlON grains and β-SiAlON with a larger aspect ratio ( α ¯ 95 $\bar{\alpha}_{95}$  = 5.1) in the α/β-SiAlON composite containing 100 nm SiC. The sample containing 10 wt.% 100 nm SiC particles sintered at 1700°C had the optimal properties with a Vickers hardness and fracture toughness of 18.5 ± .2 GPa, 6.4 ± .2 MPa m1/2, respectively.  相似文献   

15.
Pure and Al-doped ZnO powders have been sintered by Spark Plasma Sintering. Al doping allows the ceramics to reach a relative density greater than 90% at a sintering temperature of 500?°C. The morphology of powder nanoparticles impacts the final grain size of the sintered bulk compounds. A ceramic sintered from isotropic nanoparticles of 30?nm in diameter can reach an average grain size of 110?nm, whereas a ceramic sintered from platelets and isotropic nanoparticles exhibits an average grain size in the submicrometric range. The influence of ceramic grain size on the thermal conductivity has been investigated. It shows that substantial decrease of the grain size from several microns down to 100?nm reduces the thermal conductivity from 29.5 to 7.8?W/m?K at 100?°C. The stability of nanostructured ceramic has also been checked. After SPS, an annealing at 500?°C in air also leads to grain growth.  相似文献   

16.
Polymer-derived SiBCN, with superior thermal stability and amorphous activity, was introduced into ZrB2 powders. This sintering aid highly improved the sintering efficiency of ZrB2 ceramics at medium temperature (1000-1600°C), which showed a different service temperature range from that of traditional crystal additives. The microstructure and densification behavior of ZrB2–SiBCN samples were mainly studied. The polymer structural evolution including construction, rearrangement, and crystallization of the amorphous SiBCN network, made a large contribution to the densification of ZrB2 ceramics. The carbothermal reduction of pyrolysis carbon with oxide impurities could not only decrease the oxygen content, but also develop the activity of chemical bonds in SiBCN network. Diffusions and reactions at the interface also benefited the microstructure and consolidation of ZrB2–SiBCN ceramics.  相似文献   

17.
In this study, we report on the use of a two-stage annealing treatment at 1100°C coupled to reactive Spark Plasma Sintering to reduce the synthesis temperature of InGaO3(ZnO)m (m = 1 to 9) dense polycrystalline pellets below 1200°C, in order to suppress the volatilization of ZnO and get a better control of the crystalline quality of the pellets. We show that using this treatment, dense single-phase pellets can be prepared with randomly oriented grains. Besides, we evidence a monotonic evolution of the band gap in the series from 3.27 eV in InGaO3(ZnO) to 3.02 eV in InGaO3(ZnO)9, as well as a non-monotonic evolution of the lattice thermal conductivity that reaches a minimum for InGaO3(ZnO)3, lower than 2 W m−1 K−1 above 350°C. Last, we propose a procedure for the high-temperature measurement of the thermal diffusivity of oxides by the laser flash method to avoid possible reactions between the measured material and the graphite spray.  相似文献   

18.
《Ceramics International》2019,45(13):16470-16475
Porous SiC ceramics combine the properties of both SiC ceramics and porous materials. Herein, we design a facile method via pressureless sintering at relatively low temperatures for the synthesis of porous SiC ceramics. In the synthesis process, phosphoric acid was used as the sintering additive that reacted with SiO2 on the surface of SiC to form phosphates. The formed phosphates acted as a binder to connect the SiC particles. At a fixed temperature, the phosphates were partially decomposed and released a large amount of gas. This changed the pore structure of the ceramics and greatly improved their porosity. Finally, we obtained the porous SiC ceramics with high porosity and high strength. We investigate the effects of H3PO4 content on the phase composition, microstructure, porosity, mechanical properties and thermal expansion coefficient of the prepared porous SiC ceramics. It was shown that at the sintering temperature of 1200 °C, the highest porosity of the samples can reach 70.42% when the H3PO4 content is 25 wt%, and their bending strength reaches 36.11 MPa at room temperature when the H3PO4 content is 15 wt%. In addition, the porous SiC ceramics show good high-temperature stability with a bending strength of 42.05 MPa at 1000 °C and the thermal expansion coefficient of 3.966 × 10−6/°C.  相似文献   

19.
The effect of the spark plasma sintering (SPS) process on mullite formation in porcelains was studied using X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. SPS affected the kinetics and morphology of formed mullite. After sintering at 1100°C, unlike conventional sintering, SPS promoted the formation of mullite due to the combination of vacuum and applied pressure. Mullite crystal growth was altered by the atmosphere (vacuum), dwell time (0‐15 minutes), and temperature (1000‐1200°C). The applied pressure caused the mullite needles to orient perpendicular to the direction of the applied load. Depending on SPS dwell time, the mullite formed after sintering at 1100°C also had different crystal structure (tetragonal for short dwell time of 0‐5 minutes and orthorhombic for a long dwell time of 10‐15 minutes). Dissolution of mullite was observed at 1100°C by extending the dwell time by up to 15 minutes and the dissolved mullite reprecipitated on the small needles (~40 nm) and coarsened via Oswald ripening resulting in larger mullite needles (~60 nm).  相似文献   

20.
A possible substitution of UO2 for research purposes is the cerium dioxide (CeO2) owing to its chemical and physical properties. Neutronic properties are different and fission is absent in the case of CeO2; however, similarities were studied recently to have a possibility to compare the neutronic influence of secondary additives into the matrix. This paper deals with increasing the thermal conductivity of UO2 nuclear fuel on surrogate material (CeO2); the main focus of the research is given on the sintering behaviour of CeO2. The incorporation of highly thermally conductive material (SiC) is the investigated concept of thermal conductivity enhancement. Conventional sintering and spark plasma sintering (SPS) were applied to compare the behaviour of CeO2 and UO2 reported in the literature. High temperature thermal conductivity measurements did not confirm the positive influence of SiC additive inside the CeO2 matrix mainly due to grain boundary disruptions. Similar behaviour was also previously reported for UO2 pellets with SiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号