首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transflective and highly conductive Ag/ITO/Ag multilayer films were prepared by magnetron sputtering on glass substrates. The microstructure and optical properties of Ag/ITO/Ag multilayer films were systematically investigated by X-ray diffraction, scanning electron microscopy, and ultraviolet-visible spectroscopy. The optical properties of the multilayer films were significantly influenced by the thickness of the Ag surface layer from 3.0 to 12.6 nm. The multilayer film of Ag9.3nm/ITO142nm/Ag9.3nm shows the best comprehensive property. It could satisfy the requirement for transflective LCD.  相似文献   

2.
《Ceramics International》2022,48(14):20194-20200
In this paper, TCO (Transparent Conductive Oxide) incorporating ultrathin Ag intermediate film is proposed as a new buffer layer to enhance the efficiency of CIGS thin-film solar cells (TFSCs). In this regard, versatile multilayer thin-films based on ZnO/Ag/ZnO and ITO/Ag/ITO structures were deposited on glass using RF magnetron sputtering technique to determine the optoelectronic parameters of the multilayer structures. The elaborated samples were then characterized using SEM, EDS, XRD, and UV–Visible absorption spectroscopy techniques to investigate the structure morphological, optical, and electronic properties. The deposited multilayer thin-films showed amorphous-like structure and exhibited a broadband absorbance over the visible and even NIR spectrum ranges, indicating its potential application as alternative buffer layers for thin-film solar cells. In this context, TCO/Ag/TCO/CIGS solar cells have been numerically investigated using the deposited multilayer optoelectronic properties. It was revealed that the estimated efficiency of the ZnO/Ag/ZnO/CIGS-based solar cell could reach 18.5% with an open circuit voltage of 0.7 V and a short-circuit current density of 34.8 mA/cm2. The performances exhibited by the investigated solar cell demonstrated that ZnO/Ag/ZnO multilayer can be used as an alternative to the conventional CdS buffer layer for developing high-performance non-toxic CIGS solar cells.  相似文献   

3.
采用电弧离子镀技术,通过改变Ag电弧靶的弧流在医用不锈钢基底表面制备TiN/Ag多层膜,分析多层膜的微观结构,测试多层膜的厚度、结合强度和硬度,通过摩擦磨损实验测定多层膜的摩擦系数,研究了不同Ag靶弧流对多层膜结构和性能的影响规律。实验结果表明,在不同Ag靶弧流下,TiN/Ag多层膜有TiN(111)晶面和Ag(111)晶面择优生长。Ag靶弧流在一定程度上影响着多层膜中Ag的结晶度,当弧流为50 A时,Ag的结晶度达到最佳,此时多层膜的结合力最大,为45.33 N;多层膜的硬度达到最小值1 189.4 HV;多层膜的摩擦系数最小,为0.242。Ag靶弧流影响Ag层的结晶度,并且对多层膜的结合强度、硬度和摩擦系数具有明显影响。  相似文献   

4.
《Ceramics International》2021,47(22):31780-31797
CrMoSiCN/Ag coatings were deposited on Ti6Al4V alloys at the trimethylsilane flow of 15 sccm using closed-field unbalanced magnetron sputtering, and their microstructures were observed and analyzed using SEM, XRD, XPS and TEM, respectively. The coatings’ mechanical properties were measured using nano-indenter. The tribocorrosion characteristics of Ti6Al4V and CrMoSiCN/Ag coatings were investigated in seawater using tribocorrosion tester. The results revealed that the nanocomposite coatings consisted of (Cr, Mo)N solid solution, Ag nanocrystal and amorphous SiCNx matrix. As the Ag target current increased to 1.0 A, a large amount of Ag nanoparticles were observed on the coating surface. The coating hardness initially increased to 21.0 ± 0.7 GPa at the Ag target current of 0.4 A and then declined. After the Ag element was added into coatings, their tribocorrosion characteristics were improved. The tribocorrosion characteristics of coatings were much better than those of Ti6Al4V. The tribocorrosion characteristics of CrMoSiCN/Ag coating at the Ag target current of 1.0 A were the best in seawater.  相似文献   

5.
It has been reported by previous studies that cracks in cementitious materials can be healed by further hydration of unhydrated cement particles. However, by now, neither the physicochemical process nor the potential of self-healing due to further hydration is completely understood. In this paper, in order to gain insight into self-healing by further hydration, healing behaviors due to further hydration were characterized and quantified. The mineralogy of healing products was qualitatively determined and the percentage of each mineral was specified. The formation of healing products as a function of time was quantified as well. Moreover, self-healing of microcracks was simulated by a reactive transport model. The calculated filling fraction by the healing products in microcracks was consistent with the experimental results. The healing process slowed down markedly after 300 h. In addition, in younger cement pastes, larger amounts of unhydrated cement lead to greater filling fraction of microcracks.  相似文献   

6.
We investigated the optical, electrical, structural, and surface properties of roll-to-roll [R2R] sputter-grown flexible IZO/Ag/IZO/Ag [IAIA] multilayer films on polyethylene terephthalate substrates as a function of the top indium zinc oxide [IZO] thickness. It was found that the optical transmittance of the IAIA multilayer was significantly influenced by the top IZO layer thickness, which was grown on identical AIA multilayers. However, the sheet resistance of the IAIA multilayer was maintained between the range 5.01 to 5.1 Ω/square regardless of the top IZO thickness because the sheet resistance of the IAIA multilayer was mainly dependent on the thickness of the Ag layers. Notably, the optimized IAIA multilayer had a constant resistance change (ΔR/R 0) under repeated outer bending tests with a radius of 10 mm. The mechanical integrity of the R2R-sputtered IAIA multilayer indicated that hybridization of an IZO and Ag metal layer is a promising flexible electrode scheme for the next-generation flexible optoelectronics.  相似文献   

7.
Indium tin oxide/silver/indium tin oxide (ITO/Ag/ITO, IAI) multilayer structures were prepared by DC magnetron sputtering as a conductive transparent electrode for inorganic all-solid-state electrochromic devices. A thin layer of silver (Ag) with various thicknesses was inserted between two layers of ITO films. The XRD and SEM results revealed that the microscopic morphology of Ag film was closely related to the thickness. Besides, the electrical and optical properties of the IAI multilayers were significantly influenced by the Ag layer thickness. The optimized IAI multilayers demonstrated the best combination of electrical and optical properties with a figure of merit of 54.05 (sheet resistance of 6.14 Ω/cm2and optical transmittance of 90.83%) when the Ag film was 10 nm thick. In order to evaluate the IAI multilayers as a transparent electrode for electrochromic applications, two ECDs with the structures of ITO/NiOx/LiPON/WO3/ITO and ITO/NiOx/LiPON/WO3/IAI were prepared, and their electro-optical properties were characterized by cyclic voltammetry (CV), chronoamperometry (CA) and spectroscopic measurements. Compared with ECD the pure ITO top electrode (ITO/NiOx/LiPON/WO3/ITO), the ECD with the IAI top electrode (ITO/NiOx/LiPON/WO3/IAI) presented a slightly smaller optical modulation amplitude, but a faster switching speed. All our findings indicate that the IAI multilayer structure is a promising alternative to the ITO thin film for inorganic all-solid state electrochromic applications.  相似文献   

8.
Aiming to improve the thermal shock resistance of thermal barrier coatings (TBCs), the plasma-sprayed 7YSZ TBCs were modified by selective laser remelting and selective laser alloying, respectively, in this study. A self-healing agent TiAl3 was introduced into the 7YSZ TBCs by selective laser alloying to fill cracks during thermal cycling. The thermal shock experiments of the plasma-sprayed, laser-remelted, and laser-alloyed TBCs were conducted by a means of heating and water-quenching method. Results revealed that some segmented microcracks were distributed on the surface of the laser-remelted and the laser-alloyed zones, showing a dense columnar crystal structure. After thermal shock tests, the numbers of segmented microcracks on the laser-remelted coating increased, whereas, in the laser-alloyed condition, some irregular particles formed, leading to the decreased numbers of segmented microcracks. The laser-alloyed coating exhibited the best thermal shock resistance, followed by the laser-remelted condition, with the thermal shock lifetime 3.3 and 2.7 times higher than that of the as-sprayed coating, respectively. On the one hand, both columnar grains and segmented microcracks in the laser-treated zone could effectively improve the strain tolerance of coatings. On the other hand, the oxidation products of TiAl3 under high-temperature condition could seal the microcracks to postpone the crack connection. Thus, the thermal shock resistance of the laser-treated coatings was significantly improved.  相似文献   

9.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   

10.
Attributed to the merits of excellent material compatibility, healing performance, and long-term stability, the self-healing system based on microencapsulated epoxy-amine chemistry is a potentially practical self-healing system for both structural and functional materials. Herein, based on the microencapsulated epoxy-amine chemistry, a self-healing anticorrosion coating was successfully developed. This self-healing coating system was modeled theoretically to explore the factors that influence the crack filling and the self-healing anticorrosion function. The established quantitative relationship shows that the filling depth of the crack in the coating is proportional to the microcapsule parameters and coating thickness, but inversely proportional to the crack width. Based on the above theoretical model, the effects of various parameters on the anticorrosion performance were experimentally studied. The actual filling of small in-situ cracks (<100 μm) generated by impact damage was semi-quantitatively characterized using scanning electron microscopy (SEM). The filling behavior is consistent with the theoretical modeling. After being healed at room temperature for 2 days upon impact damage, the formulated self-healing coatings were subjected to accelerated corrosion tests in 10 wt% sodium chloride (NaCl) solution for 2 days to observe their anticorrosion behavior. Compared to the neat epoxy coating, all the formulated self-healing epoxy coatings show evident anticorrosion function. Good self-healing anticorrosion performance was achieved by adding 10.0 wt% microcapsules with a size of 100–150 μm to the coating with a thickness of 300 μm. The results of this investigation laid a theoretical and technical foundation for the further development of both the self-healing chemistry and the self-healing anticorrosion coating.  相似文献   

11.
Silver (Ag) nanoparticles were adsorbed preferentially on indium tin oxide (ITO) surface to form composite particles using a reverse micellar layer-by-layer deposition. The micellar process stabilized the Ag particles by an anionic sodium bis(2-ethylhexyl) sulfosuccinate (AOT) surfactant in isooctane solvent. The ITO particles surface was mediated by a cationic poly(allylamine hydrochloride) (PAH) polyelectrolyte. The heterogeneous deposition was rendered by both electrostatic attraction and hydrophilic/hydrophobic interaction, and was carried out in multiple coating cycles. The resulting hybrid particles were characterized by zeta-potential measurement, electron microscopy, X-ray diffractometry, and inductively coupled plasma analysis, respectively. Optical transmittance of the ITO/Ag composite films was found to decrease substantially with the Ag deposition over the visible wavelengths range, arising mainly from scattering induced by the Ag nanoparticles.  相似文献   

12.
《Ceramics International》2016,42(12):14071-14076
We modified the refractive index (n) of TiO2 by annealing at various temperatures to obtain a high figure of merit (FOM) for TiO2/Ag/TiO2 (45 nm/17 nm/45 nm) multilayer films deposited on glass substrates. Unlike the as-deposited and 300 °C-annealed TiO2 films, the 600 °C-annealed sample was crystallized in the anatase phase. The as-deposited TiO2/Ag/as-deposited TiO2 multilayer film exhibited a transmittance of 94.6% at 550 nm, whereas that of the as-deposited TiO2/Ag/600 °C-annealed TiO2 (lower) multilayer film was 96.6%. At 550 nm, n increased from 2.293 to 2.336 with increasing temperature. The carrier concentration, mobility, and sheet resistance varied with increasing annealing temperature. The samples exhibited smooth surfaces with a root-mean-square roughness of 0.37–1.09 nm. The 600 °C-annealed multilayer yielded the highest Haacke's FOM of 193.9×10−3 Ω−1.  相似文献   

13.
We have investigated the characteristics of a silicon oxynitride/silver/silicon oxynitride [SiON/Ag/SiON] multilayer passivation grown using a specially designed roll-to-roll [R2R] sputtering system on a flexible polyethersulfone substrate. Optical, structural, and surface properties of the R2R grown SiON/Ag/SiON multilayer were investigated as a function of the SiON thickness at a constant Ag thickness of 12 nm. The flexible SiON/Ag/SiON multilayer has a high optical transmittance of 87.7% at optimized conditions due to the antireflection and surface plasmon effects in the oxide-metal-oxide structure. The water vapor transmission rate of the SiON/Ag/SiON multilayer is 0.031 g/m2 day at an optimized SiON thickness of 110 nm. This indicates that R2R grown SiON/Ag/SiON is a promising thin-film passivation for flexible organic light-emitting diodes and flexible organic photovoltaics due to its simple and low-temperature process.  相似文献   

14.
A review on self-healing coatings based on micro/nanocapsules   总被引:1,自引:0,他引:1  
Polymer coating systems are classically applied on a metal surface to provide a dense barrier against the corrosive species. Coatings are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. Major advances for automatic repairing of defects have been made in the present decade within the field of self-healing polymeric materials. One of the most significant types of smart coatings is self-healing coating, which has the ability to release encapsulated active agents in a controlled way. They can be employed to develop a new family of smart multifunctional coatings. Incorporating micro/nanocapsules in coating matrix provides release of repairing agent rapidly after triggering due to crack propagation in coatings and gifts the self-healing to the coatings. This review covers the effective parameters in synthesis of micro/nanocapsules, several approaches to fabricate self-healing coatings based on these capsules and disadvantages of embedding them in coatings matrix. Current comprehensive review also provides all the knowledge of self-healing coatings based on micro/nanocapsules to whom that are concerned with coatings and corrosion prevention.  相似文献   

15.
Self-healing materials exhibit the ability to repair damage and restore their function. Shape memory assisted self-healing (SMASH) materials are smart materials that automatically close localized microscopic cracks and repair these cracks by bonding damaged surfaces. A novel temperature-responsive SMASH polymer composite was established by introducing Diels–Alder bonds (D–A) in polyurethane. In this article, dynamic D–A produced by the polymerization of furfurylamine and 4,4’-bismaleimidodiphenylmethane was introduced into the molecular chain to enable the polyurethane elastomers containing D–A bonds to acquire self-repairing capability. The self-healing properties of the synthesized material were examined using polarized light microscopy, which revealed excellent fracture healing. The mechanical properties before and after healing were tested, in which the initial maximum tensile strength of the material could reach 7.9 MPa, and the maximum tensile strength after self-healing was 7.3 MPa, with a repair rate of 91.8%; the maximum elongation was 585.9%, and the maximum elongation after self-healing was 469.5%, with a repair rate of 80.1%. In addition, this material has excellent repair performance for microcracks of different scales, and the micromolten part of the surface after heating can fill the micrometer cracks, play the role of antiaging, and extend the service life of the material.  相似文献   

16.
《Ceramics International》2022,48(15):21305-21316
Sintered carbides are promising materials for surfaces that are exposed to extreme wear. Owing to their high service load, ceramic-based thin films are coated on carbides using different techniques. In this study, non-toxic and cobalt-free powder metallurgy-sintered carbide samples were coated with TiN, TiAlN, CrAlN, and TiSiN ceramic-based thin film coatings by cathodic arc physical vapor deposition. The microstructure (phase formation, coating thickness, surface roughness, and topography), mechanical properties (hardness, modulus of elasticity, and plasticity indices), and tribological properties (nanoscratch and wear behavior) of the thin film coatings were investigated. No cracks or defects were detected in these layers. The ceramic-based ternary nitride thin film coatings exhibited better mechanical performance than the TiN coating. The TiN thin film coating had the highest average surface roughness, which deteriorated its tribological performance. The ternary nitride thin film coatings exhibited high toughness, while the TiN thin film coating exhibited brittle behavior under applied loads when subjected to nanoscratch tests. The wear resistance of the ternary nitride coatings increased by nearly 9–17 times as compared to that of the TiN coating and substrate. Among all the samples investigated, the substrate showed the highest coefficient of friction (COF), while the TiSiN coating exhibited the lowest COF. The TiSiN thin film coating showed improved mechanical and tribological properties as compared to other binary and ternary nitride thin film coatings.  相似文献   

17.
A multilayer ceramic actuator composed of piezoelectrically active Pb(Zn1/3Nb2/3)0.2–Pb(Zr0.5Ti0.5)O0.8 (PZN–PZT) layers and electrically conducting PZN–PZT/Ag layers was fabricated by the co-extrusion process. For the piezoelectric layers, PZN–PZT, which is sinterable at a low temperature (900°C), was used. For the conducting layers, a PZN–PZT/Ag composite, made by mixing silver particles with the PZN–PZT matrix, was employed. For the co-extrusion process, piezoelectric and conducting feedrods were made by mixing the PZN–PZT and PZN–PZT/Ag, respectively, with a thermoplastic polymer. The initial feedrods, which were composed of five 3 mm-thick PZN–PZT layers, two 1.5 mm-thick PZN–PZT layers, and six 1 mm-thick PZN–PZT/Ag layers, were co-extruded through a 24 mm × 2 mm reduction die at 105°C to produce continuous multilayered green sheets. The sheets were stacked, warm pressed, and sintered at 900°C for 4 h after binder burnout. The sintered multilayer actuator showed distinct layers without any reaction products or cracks at the interface. The thicknesses of the piezoelectric and conducting layers were about 200 and 70 μm, respectively. The displacement of the multilayer actuator, composed of 40 piezoelectric layers (with a total height of 10.8 mm), was about 10 μm at an applied voltage of 500 V.  相似文献   

18.
新型硫脲螯合树脂的合成及对Ag(Ⅰ)吸附性能的研究   总被引:3,自引:0,他引:3  
以聚苯乙烯小白球树脂为原料,经硝化、还原、接枝等反应,合成了含有硫脲功能基的新型螯合树脂,研究了该树脂对Ag+离子的吸附性能。结果表明,在实验条件下,新树脂在含有Ag+、Cu2+、Zn2+、Fe3+等混合离子的体系中,对Ag+有良好的吸附容量和选择性,在一定条件下,能定量地解析树脂所吸附的Ag+。  相似文献   

19.
Spent MoSi2 and MoB were used as raw materials to prepare multilayer MoSi2/MoB coating on molybdenum by the two-step method of slurry deposition and spark plasma sintering. The results showed dense MoSi2/MoB coating after sintering while penetrated cracks appeared in MoSi2 coating due to coefficient of thermal expansion mismatch between the Mo substrate and coating. After the sintering of MoSi2/MoB coatings, MoB and Mo2B diffusion layers were formed between MoB transition layer and Mo substrate without defects, exhibiting good metallurgical bonding. The high-temperature oxidation behavior of coatings (1500°C) was also explored. After oxidation of 50 h at 1500°C, lowest mass gain (0.035 mg/cm2) was obtained for MoSi2/MoB coating, and the oxide scale was dense and complete without voids, making the oxygen diffusion at elevated temperature inhibited. Compared with MoSi2 coating under the same oxidation conditions, relatively thinner silica oxide scale was acquired by MoSi2/MoB coating because of the reduction of cracks, and the multilayer coating exhibits better anti-oxidation properties at high temperature.  相似文献   

20.
谷卿 《电镀与涂饰》2002,21(5):7-10
介绍了叠层片式电感三层端头电极即银基底电极、镍层、锡-铅合金镀层的性能及制备工艺。提出三层端头电极的质量控制,并分析了常见的质量问题。银端头的质量取决于合适的银端`浆烧成曲线和烧结气氛;镀镍层应有较低的内应力,镀镍层内应力受镀镍液各成分浓度、无机杂质、有机杂质和pH值的影响;MLCI端头电极锡-铅合金电镀工艺及维护,镀后的清洗、MLCI的储存影响镀层的耐焊性和可焊性,对锡-铅合金镀层的耐焊性和可焊性进行了检验以获得合格的MLCI产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号