首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sol-gel-based coatings exhibit high potentiality to be as an alternative to toxic chromate coatings for surface pre-treatment of metals and alloys. However, as soon as even small defects appear in the coating, the coating cannot stop the development of corrosion process. Present work demonstrates the possibility to use zinc nitrate as healing agent to repair the organic silane coatings in NaCl solution. The zinc nitrate was added to the 0.005 M NaCl solution where AZ91D magnesium alloy coated with organic silane coating was immersed. The healing process and the healing mechanism were investigated by electrochemical measurements and scanning electron microcopy coupled with energy dispersive spectroscopy. The results demonstrated the introduction of zinc nitrate to the electrolyte could stop the development of corrosion process of the coating system and a remarkable recovery on corrosion resistance could be obtained. This effect may be attributed to the formation of zinc oxide/hydroxide on the defective areas, hindering the corrosion activities.  相似文献   

2.
Micro arc oxidation (MAO) is a prominent surface treatment to form bioceramic coating layers with beneficial physical, chemical, and biological properties on the metal substrates for biomaterial applications. In this study, MAO treatment has been performed to modify the surface characteristics of AZ31 Mg alloy to enhance the biocompatibility and corrosion resistance for implant applications by using an electrolytic mixture of Ca3(PO4)2 and C10H16N2O8 (EDTA) in the solutions. For this purpose, the calcium phosphate (Ca-P) containing thin film was successfully fabricated on the surface of the implant material. After in-vivo implantation into the rabbit bone for four weeks, the apparent growth of soft tissues and bone healing effects have been documented. The morphology, microstructure, chemical composition, and phase structures of the coating were identified by SEM, XPS, and XRD. The corrosion resistance of the coating was analyzed by polarization and salt spray test. The coatings consist of Ca-P compounds continuously have proliferation activity and show better corrosion resistance and lower roughness in comparison to mere MAO coated AZ31. The corrosion current density decreased to approximately 2.81 × 10−7 A/cm2 and roughness was reduced to 0.622 μm. Thus, based on the results, it was anticipated that the development of degradable materials and implants would be feasible using this method. This study aims to fabricate MAO coatings for orthopedic magnesium implants that can enhance bioactivity, biocompatibility, and prevent additional surgery and implant-related infections to be used in clinical applications.  相似文献   

3.
PEO coatings were produced on AM50 magnesium alloy by plasma electrolytic oxidation process in silicate and phosphate based electrolytes using a pulsed DC power source. The microstructure and composition of the PEO coatings were analyzed by scanning electron microscopy (SEM) and X-ray Diffraction (XRD). The corrosion resistance of the PEO coatings was evaluated using open circuit potential (OCP) measurements, potentiodynamic polarisation tests and electrochemical impedance spectroscopy (EIS) in 0.1 M NaCl solution. It was found that the electrolyte composition has a significant effect on the coating evolution and on the resulting coating characteristics, such as microstructure, composition, coating thickness, roughness and thus on the corrosion behaviour. The corrosion resistance of the PEO coating formed in silicate electrolyte was found to be superior to that formed in phosphate electrolyte in both the short-term and long-term electrochemical corrosion tests.  相似文献   

4.
Chitosan coatings are deposited on the surface of Mg20Zn magnesium alloy by means of the spin coating technique. Their structure was investigated using Fourier Transform Infrared Spectroscopy (FTIR) an X-ray photoelectron spectroscopy (XPS). The surface morphology of the magnesium alloy substrate and chitosan coatings was determined using Scanning Electron Microscope (FE-SEM) analysis. Corrosion tests (linear sweep voltamperometry and chronoamperometry) were performed on uncoated and coated magnesium alloy in the Hank’s solution. In both cases, the hydrogen evolution method was used to calculate the corrosion rate after 7-days immersion in the Hank’s solution at 37 °C. It was found that the corrosion rate is 3.2 mm/year and 1.2 mm/year for uncoated and coated substrates, respectively. High corrosion resistance of Mg20Zn alloy covered by multilayer coating (CaP coating + chitosan water glass) is caused by formation of CaSiO3 and Ca3(PO4)2 compounds on its surface.  相似文献   

5.
The excellent properties of magnesium alloys, especially the high strength/weight ratio, make them desirable materials in the automotive industry. However, their high corrosion susceptibility has greatly limited or even prevented their larger scale use for various applications. Organic coating is one of the most effective ways to prevent magnesium alloys from corrosion. In this report, the recent progress of organic coatings on magnesium alloys and techniques for evaluating the performance of organic coatings are reviewed.As a critical layer in a normal coating system, organic coating has great potential to prevent magnesium alloys from corrosion attack. However, some unsolved problems currently limit the application of organic coatings. Firstly, organic coatings usually have poor adhesion if they are applied without an appropriate pre-treatment. Sol–gel coating or plasma polymerization requires the least pre-treatment prior to deposition. However, the corrosion and wear resistance of these coatings have not been documented. Secondly, it is difficult to prepare a uniform, pore-free organic layer. So, it is usually necessary to apply multiple layers of these coatings to provide sufficient/optimum corrosion and wear resistance. Finally, a number of organic coating techniques are still solvent based, which poses an environmental concern. New water-borne and powder coating technologies should be developed.In order to evaluate the performance of organic coatings on magnesium, both electrochemical and non-electrochemical techniques have been developed. Information from different techniques gives insight into the organic coating/magnesium alloy interface in different aspects. Comprehensive knowledge about the interface is indispensible for understanding the degradation of the organic coating and developing new coating strategies.  相似文献   

6.
In order to improve the corrosion resistance and the surface bioactivity of biodegradable magnesium alloys, a nanostructured akermanite (Ca2MgSi2O7) coating was grown on AZ91 magnesium alloy through electrophoretic deposition (EPD) assisted with micro arc oxidation (MAO) method. The crystalline structures, morphologies and compositions of samples were characterized by X–ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The in vitro bio–corrosion (biodegradability) and bioactivity behaviors of samples were investigated by electrochemical and immersion tests. The experimental results indicated that the nanostructured akermanite coating could slow down the corrosion rate and improve the in vitro bioactivity of biodegradable magnesium alloy. Thus, magnesium alloy coated with nanostructured akermanite may be a promising candidate to be used as biodegradable bone implants.  相似文献   

7.
Titanium and its alloys are widely used as materials for implants, owing to their corrosion resistance, mechanical properties and excellent biocompatibility. However, clinical experience has shown that they are susceptible to localised corrosion in the human body causing the release of metal ions into the tissues surrounding the implants. Several incidences of clinical failures of such devices have demanded the application of biocompatible and corrosion resistant coatings and surface modification of the alloys. Coating metallic implants with bioactive materials is necessary to establish good interfacial bonds between the metal substrate and the bone. Hence, this work aimed at developing a bioglass-apatite (BG-HAP) graded coating on Ti6Al4V titanium alloy through electrophoretic deposition (EPD) technique. The coatings were characterized for their properties such as structural, electrochemical and mechanical stability. The electrochemical corrosion parameters such as corrosion potential (Ecorr) (open circuit potential) and corrosion current density (Icorr) evaluated in simulated body fluid (SBF) have shown significant shifts towards noble direction for the graded bioglass-apatite coated specimens in comparison with uncoated Ti6Al4V alloy. Electrochemical impedance spectroscopic investigations revealed higher polarisation resistance and lower capacitance values for the coated specimens, evidencing the stable nature of the formed coatings. The results obtained in the present work demonstrate the suitability of the electrophoretic technique for the preparation of graded coating on Ti6Al4V substrates.  相似文献   

8.
Biodegradable magnesium (Mg) alloys have drawn considerable attention for use in orthopedic implants, but their antibacterial activity and corrosion resistance still require improvement. In the present work, functional Ta2O5 (tantalum pentoxide) compact layers and PCL/MgO-Ag (poly (ε-caprolactone)/magnesium oxide-silver) nanofiber porous layers were subsequently deposited on Mg alloys via reactive magnetron sputtering and electrospinning, respectively, to improve anticorrosion and antibacterial performance. Sputter coating of the Ta2O5 resulted in a thick layer (~1?μm) with an amorphous structure and high adhesive strength. The nanostructure exhibited bubble-like patterns with no obvious nano-cracks, nano-porosities, or pinholes. The electrospun PCL/MgO-Ag nanofiber coating was porous, smooth, and plain with no obvious beads. In vitro corrosion tests demonstrated the PCL/MgO-Ag nanofiber-coated alloy had greater corrosion resistance than a Ta2O5 sputter-coated alloy or uncoated Mg alloy. The additional electrospun PCL/MgO-Ag nanofiber coating also had greater antibacterial behavior toward Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria than the Ta2O5-coated or uncoated alloy specimens. Increasing the MgO-Ag concentration of the nanofibers from 1 to 3?wt% increased antibacterial activity. The combination of Ta2O5 and PCL/MgO-Ag nanofiber coatings on Mg alloys may therefore have potential applications for reducing bone infection as related to orthopedic implants for bone repair.  相似文献   

9.
《Ceramics International》2020,46(1):824-832
To improve the long-term corrosion resistance of biodegradable AZ31 magnesium alloy, the micro-nano structural hydroxyapatite (HA) coating was fabricated on AZ31 substrate by hydrothermal treatment. The compact and high crystallinity HA coating prepared at 120 °C had excellent electrochemical properties. Moreover, the cell viability experiment revealed that the micro-nano structure coating was conducive to the viability and proliferation of MC3T3-E1 osteoblasts. The immersion experiment in simulated body fluid (SBF) solution showed that the micro-nano structural HA coatings could quickly induce the production of HA mineralization, and then the mineralization evolved into a compact mineralized layer on the surface of coated sample, which provided a long-term protection for the specimen. Even after 147 days of immersion, the coated samples remained the relatively complete macroscopic shape, the corrosion rates were lower than 0.500 mm/y and the pH values of the SBF solution maintained in the range of 7.10–7.80, suggesting when these coated AZ31 magnesium alloys were used as degradable biomaterial implants, they could provide a long-term mechanical support during the healing of damaged bones.  相似文献   

10.
镁合金微弧氧化陶瓷膜具有较好的耐蚀性和机械性能.综述了镁合金微弧氧化膜耐蚀性、硬度、摩擦磨损和拉伸性能等的最新研究进展,归纳了电解液成分和工艺参数对陶瓷膜耐蚀性和机械性能的影响.概括了镁合金微弧氧化处理技术的不足之处.  相似文献   

11.
Metallic biomaterials have been employed in replacing and reconstructing the structural parts of the human physical structure due to their high mechanical properties, superior biocompatibility, and high corrosion resistance. The most common metallic biomaterials that have been used in implants include magnesium, stainless steel, cobalt-based alloy, titanium, and titanium-based alloy. Hydroxyapatite (Ca10(PO4)6(OH)2) is one of the ceramic biomaterials considered as ideal materials for coating on metallic biomaterials as it possesses almost the closest similarity in chemical composition and excellent biocompatibility with natural bone tissue. Recently, the HAp-based coating has increasingly drawn attention to improve the adhesion quality in metallic biomaterials. This study comprehensively reviews the current progress in the adhesion qualities of HAp-based coatings on metallic biomaterials specifically for the biomedical application. It has been observed that a surface that meets the minimum unique characteristics will enhance the bonding force between the coating and metallic biomaterial as the substrate. Critical factors of coating/substrate materials, coating techniques, and coating thickness that determine the adhesion quality are thoroughly identified and discussed. The surface structure and microstructure of HAp-based coating are also reviewed to confirm the findings.  相似文献   

12.
To slow down the initial biodegradation rate of magnesium (Mg) alloy, crystalline nano-sized bioactive glass coating was used to deposit on micro-arc oxidized AZ91 samples via electrophoretic deposition (EPD). Zeta potential and conductivity of the bioactive glass suspension were characterized at various pH values to identify the most stable dispersion conditions. The bone-bonding properties of bioactive glass coated samples were evaluated in terms of apatite-forming ability during the immersion in simulated body fluid (SBF) solution. Results revealed that the ability to form a bioactive glass coating via EPD was influenced by the degree of its crystalline phase composition. Moreover, the potentiodynamic polarization tests recorded significant drops in corrosion current density and corrosion rate of the coated samples which implies a good level of corrosion protective behavior. These preliminary results show that this process will enable the development of Mg implants in the later stage of bone healing.  相似文献   

13.
在AZ 91D镁合金基体上分别制备三元化学镀Ni-Cu-P,Ni-Ce-P镀层,用失重法将试样分别放入质量分数为3.5%的NaCl溶液和质量分数为5%的醋酸溶液中进行耐蚀性对比实验。结果表明:相对于AZ 91D基体,Ni-Cu-P镀层和Ni-Ce-P镀层在质量分数为5%的醋酸溶液中耐蚀性分别提高了50倍和12.8倍,在质量分数为3.5%的NaCl溶液中分别提高了2.76倍和91.63倍;经封孔和热处理封孔后的耐蚀性均有明显提高。实验表明:在AZ 91D镁合金表面化学沉积Ni-Ce-P镀层的综合耐蚀性能优于化学沉积Ni-Cu-P镀层的。该实验有助于解决镁合金的耐蚀性问题、提高其表面性能和拓宽其应用前景。  相似文献   

14.
AZ91D镁合金表面不同树脂体系富镁涂层的保护性能   总被引:3,自引:0,他引:3       下载免费PDF全文
卢向雨  吴静英  左禹  郑传波 《化工学报》2015,66(11):4578-4587
采用划叉浸泡实验,电化学交流阻抗(electrochemical impedance spectroscopy,EIS),开路电位(open circuit potential,OCP)及动电位扫描研究了不同类型的环氧树脂对于AZ91D镁合金的表面的富镁涂层的保护性能的影响。结果表明环氧618-593构成的富镁涂层防护性能较差;环氧6101-TY650制备的富镁涂层可明显改善涂层对破损处镁合金基体的保护作用,但涂层本身长期防护性能较差;环氧618-T31构成的富镁涂层对AZ91D镁合金的防护作用较强,适宜制备镁合金表面的富镁涂层。3种环氧涂料中加入镁粉颗粒制备的富镁涂层均可对缺陷处裸露的AZ91D镁合金基体提供保护,从而延长漆膜的破坏时间。涂层中的镁粉颗粒被激活后,为镁合金的基体提供了一定程度的阴极保护作用,减缓了镁合金基体的腐蚀。  相似文献   

15.
We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.  相似文献   

16.
LY12铝合金钼酸盐转化膜及其耐蚀性   总被引:7,自引:2,他引:5  
王成  江峰 《电镀与环保》2001,21(5):16-18
应用电化学方法研究了LY12铝合金钼酸盐转化膜的成膜过程及其在3.5%NaCl溶液中的耐蚀性。结果表明,钼酸盐转化处理成膜工艺简单,经钼酸盐转化处理的铝合金的耐蚀性能提高,转化处理提高了铝合金的抗点腐蚀能力。电位-时间曲线表明钼酸盐转化膜成膜较为顺利。分析了膜的形成机理及耐蚀机理。  相似文献   

17.
《Ceramics International》2022,48(5):6520-6527
Self-healing ceramics coatings show a lot of promising applications in oxidation and corrosion protection under a high-temperature oxidation environment. However, ceramics coatings only depending on mobile phase filling and volume expansion from oxidation-induced healing reveal a slow healing rate of formed micron-sized cracks under actual utilization conditions. Here, we report the synergistic cracks self-healing mechanism (oxidation-induced healing and precipitation-induced healing) of Al-modified SiC coating with nitrogen heat treatment in a high-temperature oxidation environment. Most of the in situ cracks are completely healed through the synergistic self-healing mechanism at 1500 °C in an air atmosphere. Likewise, the coating with better self-healing abilities also has superior oxidation resistance. This paradigm has the potential to revolutionize the existing self-healing ceramics coatings.  相似文献   

18.
The paper deals with understanding the electrochemical impedance behavior of (a) chromate coating (b) electrically conducting polymer coating and (c) polyurethane coating under different combinations applied over AZ31 magnesium alloy in an effort to develop a conducting organic coating that can offer corrosion protection as well as electrical conductivity. The study indicates that dispersion of graphite in acrylic coating though significantly brings down the electrical resistance; application of such a coating on the magnesium alloy does not offer good resistance against corrosion. In order to gain both the corrosion resistance as well as electrical conductivity an intermediate coating such as polyurethane needs to be provided. The paper discusses the electrochemical impedance behavior of the above coatings.  相似文献   

19.
Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and bioactivity of the strontium-doped brushite coatings were evaluated using cultured osteoblasts. Osteoblast proliferation was enhanced by the addition of strontium, suggesting a possible mechanism by which strontium incorporation in brushite coatings increased bone formation surrounding the implants. Cell growth was also strongly influenced by the composition of the deposited coatings, with a 10% Sr-doped brushite coating inducing the greatest amount of bone formation among the tested materials.  相似文献   

20.
Zirconia has been commonly used in the dental industry because of its excellent biological, mechanical and aesthetic properties. This material, however, is classified as nearly inert. To bioactivate the ceramic surface, biomimetic depositions of calcium phosphate coatings have been developed. We demonstrate an accelerated biomimetic coating method on zirconia using a specific pre-treatment with biological agents. We have chosen bovine serum albumin as a standard protein. Through the pre-treatment of the zirconia using a hydroxylation or additionally immobilizing the bovine serum albumin on the surface, we could influence the CaP deposition rate. Immunohistochemical analyses verified the presence of BSA on the zirconia surfaces. After immersion in simulated body fluid at 40 °C, the samples were analyzed by scanning electron microscopy and X-ray diffraction to visualize the CaP formation. Here we could show as proof-of-principle that it is possible to accelerate biomimetic coating processes on zirconia implants containing BSA on their surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号