首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, 5 at.% Yb:Lu2O3 transparent ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) posttreatment using co-precipitated nano-powders. The influence of precipitant molar ratio, ammonium hydrogen carbonate, to metal ions (AHC/M3+, R value) on the properties of Yb:Lu2O3 precursors and calcined powders was investigated systematically. It was found that the powders with different R value calcined at 1100°C for 4 hours were pure cubic Lu2O3 but the morphologies of precursors and powders behaved differently. The opaque samples pre-sintered at 1500°C for 2 hours grew into transparent ceramics after HIP posttreatment at 1750°C for 1 hour. The final ceramic with R = 4.8 showed the best optical quality with the in-line transmittance of 79.7% at 1100 nm. The quasi-CW laser operation was performed at 1034 nm and 1080 nm with a maximum output power up to 8.15 W as well as a corresponding slope efficiency of 58.4%.  相似文献   

2.
Ytterbium doped scandium oxide (Yb:Sc2O3) transparent ceramics were fabricated by a co-precipitation and vacuum sintering method. The characteristics of the precursor and the calcined powders were investigated by BET, XRD, and SEM. Ultra-fine and low agglomerated 5at%Yb:Sc2O3 powders with the average particle size about 65.4 nm were obtained after calcined at 1100 °C for 5 h. Using the synthesized powders as starting materials, 5at%Yb:Sc2O3 transparent ceramics with the in-line transmittance of 71.1% at 1100 nm and average grain size of 145 μm were fabricated by vacuum sintering at 1825 °C for 10 h. Quasi-CW laser oscillation of Yb:Sc2O3 ceramics was obtained at 1040.6 nm. A maximum output power as high as 2.44 W with a corresponding slope of 35% was achieved. Finally, the tunability of the ceramic was explored measuring a tuning range up to 55 nm.  相似文献   

3.
5at.% Yb:Lu2O3 transparent ceramics were fabricated successfully by vacuum sintering along with hot isostatic pressing posttreatment from the nanopowders. The influences of calcination temperature on morphology and microstructures of powders and ceramics were studied systematically. The optimal ceramic sample from the nanopowder calcined at 1050°C shows uniform and dense microstructure with the in-line transmittance of 81.5% at 1100 nm. The results of the thermal measurements, that is, thermal conductivity and specific heat, were related to the changes occurring in the microstructure of the ceramics studied. It was shown on this basis that appropriate control of the technological process of sintering ceramics makes it possible to obtain laser ceramics with very good thermal properties as well as maintaining their high optical quality. Concerning the laser performance, the highest-optical quality 5at.% Yb:Lu2O3 sample was pumped in quasi-continuous wave conditions measuring a maximum output power of 2.59 W with a corresponding slope efficiency of 32.4%.  相似文献   

4.
Ytterbium doped lutetium oxide (Yb:Lu2O3) transparent ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) of the powders synthesized by the co-precipitation method. The effects of calcination temperature on the composition and morphology of the powders were investigated. Fine and well dispersed 5?at% Yb:Lu2O3 powders with the mean particle size of 67?nm were obtained when calcined at 1100?°C for 4?h. Using the synthesized powders as starting material, we fabricated 5?at% Yb:Lu2O3 ceramics by pre-sintering at different temperatures combined with HIP post-treatment. The influence of pre-sintering temperature on the densities, microstructures and optical quality of the 5?at% Yb:Lu2O3 ceramics was studied. The ceramic sample pre-sintered at 1500?°C for 2?h with HIP post-treating at 1700?°C for 8?h has the highest in-line transmittance of 78.2% at 1100?nm and the average grain size of 2.6?µm. In addition, the absorption and emission cross sections of the 5?at% Yb:Lu2O3 ceramics were also calculated.  相似文献   

5.
《Ceramics International》2016,42(12):13812-13818
Terbium doped yttrium aluminum garnet (Tb:YAG) transparent ceramics with different doping concentrations were fabricated by the solid-state reaction method using commercial Y2O3, α-Al2O3 and Tb4O7 powders as raw materials. Samples sintered at 1750 °C for 20 h were utilized to observe the optical transmittance, microstructure and fluorescence characteristics. It is found that all the Tb: YAG ceramics with different doping concentrations exhibit homogeneous structures with grain size distributions around 22–29 µm. For the 5 at% Tb:YAG transparent ceramics, the grain boundaries are clean with no secondary phases. The photoluminescence spectra show that Tb:YAG ceramics emit predominantly at 544 nm originated from the energy levels transition of 5D47F5 of Tb3+ ions, and the intensity of the emission peak reaches a maximum value when the Tb3+ concentration is 5 at%. The in-line transmittance of the 5 at% Tb:YAG ceramics is 73.4% at the wavelength of 544 nm, which needs to be further enhanced by optimizing the fabrication process. We think that Tb:YAG transparent ceramics may have potential applications in the high-power white LEDs.  相似文献   

6.
It is well‐known that doping YAG with Si dramatically affects densification and grain growth, and as a result Si is commonly added to YAG as a sintering additive to achieve full density and transparency. In recent studies, the influence of Si was explored, but segregation of Si to grain boundaries in YAG was not detected. The present article contradicts previous findings by revealing an excess of Si at grain boundaries in YAG. The findings were corroborated using atom probe tomography and energy‐dispersive spectroscopy in a scanning transmission electron microscope. To the best of the author's knowledge, this is the first time Si segregation was discovered in SiO2‐doped YAG, and the first time a dopant concentration profile at grain boundaries in a ceramic material was characterized by atom probe tomography. Finally, a change is proposed for the method to calculate grain‐boundary mobility in the presence of a solute (Lucke and Detert), showing a good correspondence to the experimental results. These results can change the view on solute distribution in ceramic grain boundaries from theoretical and characterization aspects.  相似文献   

7.
《Ceramics International》2019,45(14):17354-17362
Yb:YAG (yttrium aluminum garnet) transparent ceramics were fabricated by the solid-state method using monodispersed spherical Y2O3 powders as well as commercial Al2O3 and Yb2O3 powders. Pure YAG phase was obtained at low temperature due to homogeneous mixing of powders. Under the same sintering conditions, the Yb:YAG ceramics with different doping contents of Yb3+ had similar morphologies and densification rates. After being sintered at 1700 °C in vacuum, the ceramic samples had high transparencies. The Yb:YAG ceramics doped with 0.5 wt% SiO2 formed Y–Si–O liquid phase and nonstoichiometric point defects that enhanced sintering. Compared with Nd doping, Yb doping hardly affected the YAG grain growth, sintering densification or optical transmittance, probably because Yb3+ easily entered the YAG lattice and had a high segregation coefficient.  相似文献   

8.
Ho:Lu3Al5O12(LuAG) transparent ceramics are potential 2 μm eye‐safe laser materials. Polycrystalline 0.8 at.% Ho:LuAG ceramics with high optical quality were successfully fabricated by solid‐state reactive sintering of high‐purity oxide powders. The microstructure, the optical transmission, the spectrum characteristic, and the laser performance were investigated in this paper. The average grain size of Ho:LuAG ceramics vacuum sintered at 1830°C for 30 hour is about 14 μm. The in‐line transmittance of the sample is measured to be 81.7% and 82.0% at 1000 and 2250 nm, respectively. The absorption and the emission cross sections are calculated to be 0.88 × 10?20 cm2 at 1906 nm and 1.26 × 10?20 cm2 at 2094 nm. Using a thulium‐doped yttrium‐lithium‐fluoride (Tm:YLF) laser with the central wavelength of 1907.5 nm as the pump source, 2.67 W continuous wave (CW) laser operation at 2100.74 nm was obtained with a slope efficiency of 26.5%. The beam quality factor M2 was calculated to be 1.1, which indicated nearly diffraction‐limited beam propagation and the laser was the fundamental TEM00 Gaussian mode.  相似文献   

9.
Gelcasting is a simple near-net shaping method to fabricate large-sized and/or complicated-structural ceramics. In this paper, a transparent yttrium alumina garnet (YAG) ceramic was successfully fabricated by gelcasting with a nontoxic, water soluble copolymer (isobutylene and maleic anhydride, Isobam) as both dispersant and gelling agent. The rheological behaviors of the slurries with different solids loading and Isobam contents were systematically investigated. The optimized slurry of 0.5 wt% Isobam and the solid loading of 68 wt% had the low viscosity and high stability, resulting in better homogeneity of the green body and better optical quality of transparent ceramics. A nearly pore-free structure of the sintered YAG ceramics with average grain size about 10.0 µm was obtained possessing an in-line transmittance of 75.7% at the wavelength of 1064 nm for a sample 2.5 mm thick.  相似文献   

10.
Yb3+:CaF2 transparent ceramics are promising laser gain media with outstanding performance. However, low transmittance in the visible range is the main challenge that restricts the application of Yb3+:CaF2 ceramics in the laser system. In this paper, a new scheme to eliminate the residual pores in the Yb3+:CaF2 transparent ceramics based on doping of NaF as a sintering aid is proposed. Microstructural characterization indicated that NaF could inhibit the grain growth and increase the transmittance in the visible range significantly. The corresponding transmittance was measured to be 85% at the wavelength of 400 nm. The spectra results showed that co-doped with Na+ ions could break the clusters of Yb3+ ions and modulate the spectroscopy properties of Yb3+: CaF2 lattice efficiently. This paper proved that doping with NaF is an efficient strategy to improve the transmittance and fluorescence quantum efficiency of Yb3+:CaF2 transparent ceramics.  相似文献   

11.
《Ceramics International》2016,42(9):10770-10778
Ho:Y2O3 ceramics were prepared using co-precipitated powders, with ammonium sulfate as dispersant. Y3+ was co-precipitated together with Ho3+ and Zr4+ to produce precursors, which were calcined at 1100–1400 °C to produce yttria-based powders. At calcination temperatures of ≤1300 °C, agglomeration of powders was not observed. When the temperature was increased to 1400 °C, severe agglomeration was detected. Densification was closely related to the calcination temperature: a lower calcination temperature resulted in a faster densification of ceramics to the relative density of 99.7%. The ultimate densification to ~100% was also closely related to powders' impurity level and agglomeration. Grain growth was mainly determined by sintering temperature, but not by the initial crystallite size of powders. The optimal calcination temperature was 1300 °C, at which the obtained Ho:Y2O3 powder was free from agglomeration. Using this powder, the resultant Ho:Y2O3 ceramics showed pore-free microstructure and good optical transparency.  相似文献   

12.
Transparent Yb:Y3ScAl4O12 (Yb:YSAG) ceramics with different ytterbium doping concentrations such as 5, 10, 15, 20 at.% have been successfully fabricated by solid-state reactive sintering. All the obtained ceramics are in dense and homogeneous structure after sintering at 1820°C for 30 hours and with a posttreatment by hot isostatic pressing at 1750°C for 3 hours with 200 MPa pressure. We systematically analyzed the influence of Yb3+ doping concentration on the microstructure and optical properties of the ceramics. The 10 at.% Yb:Y3ScAl4O12 ceramics with a thickness of 3.2 mm show the best transparency as high as 80.9% at 1100 nm. The laser emission of the 10 at.% Yb:YSAG ceramics was tested, resulting in a maximum slope efficiency of 67.6% and a maximum output power of 11.3 W under quasi-continuous wave pump conditions. The tuning range spanned from 990 to 1071 nm.  相似文献   

13.
Transparent 4 at.% Tm:Y3ScAl4O12 (Tm:YSAG) laser ceramics were fabricated by solid-state reaction combined with vacuum sintering method. The 4 at.% Tm:YSAG ceramic sample sintered at 1800°C for 30 hours possesses homogenous microstructure and excellent optical properties, showing a transmittance of 79.3% at 2000 nm. The absorption and emission spectra of the Tm:YSAG ceramics are studied and compared with those of 4 at.% Tm:Y3Al5O12 ceramics. The introduction of Sc3+ greatly affects the energy levels of the Tm3+, causing the disappearance and degeneration of some absorption and emission peaks in the middle infrared region. The laser performance of the 4 at.% Tm:YSAG ceramics is also tested in the Quasi-continuous-wave (QCW) mode by pumping with a 790 nm laser diode (LD). A maximum laser output power of 0.54 W with a slope efficiency of 4.8% is achieved, which is the first laser output for Tm:YSAG ceramics.  相似文献   

14.
Nd:BaF2 nanoparticles have been prepared via co-precipitation and a pumping filtration wash method. The phase composition and morphology of the synthesized nanoparticles were investigated by X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM) analyses, respectively. SEM observations revealed the powder's particle size to be approximately 100-200 nm after calcination at 600°C for 5 hours in Ar. The transparent Nd:BaF2 ceramics were then fabricated by the one-step vacuum sintering method at a temperature of 1200°C for 10 hours. SEM observations of the polished and thermally etched cross sections of the sintered ceramic revealed a highly homogenous microstructure with average grain size of 420 μm. Optical property characterization revealed that the transmittance of the ceramic reaches a maximum of ~70% in the infrared wavelength range, and an emission peak located at 1058 nm, excited by 808 nm light.  相似文献   

15.
The transparent polycrystalline erbium and ytterbium co-doped yttrium aluminum garnet (Er,Yb:YAG) ceramics with various Yb contents from 5% to 25% were prepared by the solid-state reaction and the vacuum-sintering technique. The in-line transmittances of the mirror-polished ceramics exceed 80% from the visible band to the infrared band. The samples are very compact with few pores. The average grain size of the Er,Yb:YAG ceramic is about 15 μm. The upconversion luminescence spectra, infrared luminescence spectra and luminescence decay curves of the ceramics were observed and discussed. For 1%Er doped YAG ceramic, the best ion ratio of Yb3+ and Er3+ is around 15:1.  相似文献   

16.
We report on our recent progress of fabricating Yb3+-doped Lu2O3 transparent ceramics for 1 μm solid-state laser application. Well-dispersed 3.3 at.% Yb:Lu2O3 nanopowders were synthesized using a co-precipitation method. Without using any sintering aids, the Yb:Lu2O3 nanopowders could be densified by vacuum sintering at 1500°C/10 hours followed by HIPing at 1480°C/4 hours. Such obtained Yb:Lu2O3 ceramics had not only dense microstructure and submicron grain size of about 0.6 μm, but also in-line transmission of 80.0% at 600 nm. Preliminary continuous wave (CW) laser experiments with an uncoated Yb:Lu2O3 ceramic slab have demonstrated highly efficient CW laser oscillation at 1079.8 nm.  相似文献   

17.
Ultra-highly transparent ZrO2-doped Yb3+: Y2O3 ceramics were prepared by slip casting and vacuum pressureless sintering and the transmittance reached the highest value of 80.9% for the sample doped with 8.0 at% Yb3+. There are three main absorption peaks at 905, 950, and 976 nm, corresponding to the transition from the lowest level of field splitting of 2F7/2 crystal to every splitting energy levels of 2F5/2 crystal field. We analyzed the absorption and emission spectra of transparent Yb3+: Y2O3 from the energy level structure of Yb3+, and the transmission, absorption, and emission spectra were systematically studied. There are three main absorption peaks at 905, 950, and 976 nm and four emission peaks at 1076, 1031, 1013, and 977 nm, respectively. The emission peaks at 977 and 1013 nm broaden and vanish for 8.0 and 10.0 at% Yb3+-doped Y2O3, which may be related to the change of Y2O3 crystal field caused by high concentration.  相似文献   

18.
Silica (SiO2) is widely used as sintering aid during vacuum sintering of YAG (Y3Al5O12)‐based transparent ceramics. These ceramics are mainly used for laser applications when they are doped with rare‐earth luminescent elements such as Yb3+ or Nd3+. By means of microstructural, chemical, dilatometry, and thermogravimetry analyses, this study has evidenced that sufficiently high amount of silica (ie above the solubility limit in YAG) forms intergranular transient liquid phase of mixed composition Y‐Al‐Si‐O that vaporizes rapidly for temperatures higher than 1350°C. As a result, silica content after sintering remains always lower than the solubility limit in YAG ceramics (ie lower than 900 ppm). Finally, vacuum sintering with an external source of gaseous Si was proven to be suitable to manufacture highly transparent Nd:YAG ceramics.  相似文献   

19.
In this work, stereology and fractals were applied to identify the quantitative relation between stereology parameters, fractal dimension, and mechanical properties of Nd: YAG transparent ceramics sintered at 1750 °C for 8–50 h. Mechanical properties and microstructure of the samples were investigated by using universal testing machine, micro-hardness tester, and scanning electron microscopy (SEM), respectively. When the ceramics were sintered at 1750 °C for 50 h, the compressive strength, flexural strength, and Vickers hardness reached 381.6 ± 5.2 MPa, 275.0 ± 5.5 MPa, and 1330.4 ± 18.5 MPa, respectively. Besides, the fracture toughness of ceramic samples was calculated by Vickers hardness. Micrographs of the sample surface and frequency distribution of crystal grains were analyzed by using metallographic image analyzer software. Findings suggest that compressive strength, flexural strength, and Vickers hardness linearly increase upon an increase in equivalent sphere diameter (D3S). However, compressive strength, flexural strength, and Vickers hardness decrease as a function of specific surface area per unit volume of the grains (SV) and discrete grains (SVP) and mean free distance (λ). Perimeter and area of crystal grains were obtained by using Image-Pro Plus image analysis software. The relationship between the fractal dimension of grain boundary and mechanical properties was analyzed based on the area-perimeter (small-island) method. When the grain boundary fractal dimension is close to 1.0, the geometry of ceramic grains tends to be regular, and mechanical properties of ceramic samples increases.  相似文献   

20.
In order to fully pump and smoothen the temperature gradient of the gain medium, multistage gradient doping Yb:YAG laser ceramics were designed. The composite green bodies were fabricated by tape casting, and multistage gradient doping Yb:YAG ceramics with high optical quality were prepared by vacuum sintering and hot isostatic pressing. For samples pre-sintered at 1740°C for 30 h and then HIP-ed at 1700°C for 3 h in argon at 200 MPa, the in-line transmission values at 1100 nm of YAG, 0.6 at.%Yb:YAG, and 1.5 at.%Yb:YAG ceramics were found to be 83.9%, 84.1%, and 83.3%, respectively. Finally, the 940 nm laser diode was used as the pump source to realize the 1030 nm laser output of multistage gradient doping Yb:YAG ceramic slab with a total energy of 3.43 J. The corresponding optical-to-optical conversion and slope efficiencies were 30% and 45%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号