首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SiC fiber-reinforced mullite ceramic-matrix (SiCf/mullite) composite is a promising load-bearing and microwave absorption material. However, the strong interfacial bonding strength and low permittivity cause poor mechanical and absorption performance. Herein, we report SiCf/C-SiC/mullite composite containing a carbon nanosphere network (CNSN) in the SiC interface prepared by precursor infiltration and pyrolysis (PIP). Due to the contribution of CNSN towards interface debonding, fiber slipping, and individual fiber pull-out, the composite shows significant improvement in the flexural strength (by 187%, from 56.23 ± 4.89 MPa to 161.69 ± 13.43 MPa) and the failure displacements (by 238%, from 0.080 ± 0.006 mm to 0.271 ± 0.015 mm). Moreover, the real and imaginary parts of complex permittivity (ε′, ε″) are enhanced from 5.57 to 5.98–6.36–7.11 and from 1.27 to 1.95–2.97–4.69, respectively. Under the synergistic effect of appropriate impedance matching in company with effective conductive loss and multiple polarization loss, the effective absorption bandwidth (EAB) increases from 0.98 GHz to the entire X band, and the minimum reflection loss (RLmin) enhanced from − 14.31 dB to − 41.51 dB.  相似文献   

2.
《Ceramics International》2015,41(8):9885-9892
The electromagnetic wave absorption properties of double-layer barium titanate/carbon nanotube (BTO/CNT) nanocomposites were evaluated. The BTO/CNT nanomaterials were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. The reflection loss (R.L.) of the samples was calculated based on the measured complex permittivity and permeability. The minimum R.L. of single-layer BTO/CNT 30 wt% nanocomposites sample with a thickness of 1.1 mm reached ~−30.3 dB (over 99.9% absorption) at 13.8 GHz, and the bandwidth of the reflection loss less than −10 dB (over 90% absorption) was 1.5 GHz. The double-layer composites consist of BTO/CNT 30 wt% (absorption layer) with thickness of 1.0 mm and BTO 30 wt% (matching layer) with thickness of 0.3 mm showed a minimum R.L. of ~−63.7 dB (over 99.9999% absorption) at 13.7 GHz, and the bandwidth of the reflection loss less than −10 dB was 1.7 GHz. Wider response bandwidth, >1.7 GHz also can be achieved with different designs of double-layer absorbers. The R.L. significantly improved and wider response bandwidth can be obtained with double-layer composites. The capability to modulate the absorption and bandwidth of these samples to suit various applications in different frequency bands indicates that these nanocomposites could be an excellent electromagnetic wave absorber.  相似文献   

3.
In this study, glass fiber composite prepreg is manufactured with multi‐walled carbon nanotube (MWNT) added epoxy using two different methods. Because MWNT agglomeration occurs, the calendering dispersion method is used to resolve this problem. The tensile and shear tests of glass/MWNT 1.8wt % added epoxy composite (CNT18) are conducted and the results are compared with the properties of a commercial glass/epoxy composite (GEP 118). The complex permittivity is measured using a network analyzer and a waveguide in the Ku‐band. A single slab radar absorbing structure (RAS) is also designed and verified. It is found that the tensile and shear properties of CNT18 are sufficient to replace GEP 118 as a structural material. Furthermore, the—10 dB bandwidth and reflection loss of the RAS using CNT18 is 12.87 to 17.78 GHz (4.91 GHz) and—29.2 dB at 14.95 GHz, respectively. The measurement results align well with the simulation results. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42019.  相似文献   

4.
於留芳 《化工时刊》2008,22(10):4-6
采用化学镀的方法对活性炭进行表面镀钴,透射电镜(TEM)观察证实了活性炭的表面上已经镀覆上了钴层。采用HP8722ES矢量网络分析仪测量了样品在2—18GHz频率范围内的复介电常数(εT=ε'-jε'')和复磁导率(μT=μ'-μ'')。用吸收屏理论公式计算其反射损耗(R.L.)、匹配厚度(dm)及匹配频率(fm)。结果表明,随着匹配厚度的增大,吸收峰没有发生移动,但吸收峰值有所下降。在匹配厚度dm=0.2mm时,样品最大反射损耗达-5.23dB,对应的匹配频率fm=10.59GHz,而且在整个电磁波频率测试范围内,反射损耗值均小于-4.8dB。  相似文献   

5.
The effect of carbon fiber (CF) modification with multiwall carbon nanotube (CNT) on the electrical, mechanical, and rheological properties of the polycarbonate (PC)/CF/CNT composite was investigated. The CF and multiwall CNT (MWCNT) were treated with sulfuric acid and nitric acid (3:1 wt %) mixture, to modify the CF with the CNT. For the PC with acid-treated CNT (a-CNT) modified acid-treated CF (a-CF) (PC/a-CF/a-CNT) composite, the electrical conductivity, and the electromagnetic interference shielding effectiveness (EMI SE) showed the highest values, compared with those of the PC/a-CF and PC/a-CF/CNT composites. The EMI SE of the PC/a-CF (10 wt %)/a-CNT (0.5 wt %) composite was found to be 26 (dB at the frequency of 10.0 GHz, and the EMI SE was increased by 91.2%, compared to that of the PC/a-CF composite at the same amount of total filler content. Among the composites studied in this work, the PC/a-CF/a-CNT composite also showed the highest values of relative permittivity (εr) and dielectric loss factor. The above results suggest that the CF modification with the a-CNT significantly affected the electrical conductivity and EMI SE of the composite, and the hybrid fillers of the a-CNT and a-CF resulted in good electrical pathways in the PC/a-CF/a-CNT composite. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47302.  相似文献   

6.
The electromagnetic (EM) wave absorbing properties of Cr2AlB2 powders and those after high-temperature oxidation were investigated. Coupling of magnetic and dielectric loss enables Cr2AlB2 with good absorption properties. The minimum reflection loss (RL) value is −44.9 dB at 8.5 GHz with a thickness of 2.7 mm, and the optimized effective absorption bandwidth (EAB) is 4.4 GHz (13.0-17.4 GHz) with a thickness of 1.6 mm. After oxidation at 750, 900, and 1000°C for 2 h, the minimum RL values, respectively, are −23.9 dB (17.5 GHz, 1.5 mm), −41.4 dB (16.5 GHz, 1.5 mm), and −39.5 dB (8.0 GHz, 3.0 mm); and the corresponding EAB values, respectively, are 3.8 GHz (13.6-17.4 GHz, 1.7 mm), 4.1 GHz (13.5-17.6 GHz, 1.6 mm), and 4.4 GHz (13.0-17.4 GHz, 1.7 mm). With an absorber thickness of 1.5-4.0 mm, the EAB with a RL value of less than −10 dB can be tuned in a broad-frequency range 5.0-18.0 GHz, which basically covers C (4-8 GHz), X (8-12 GHz), and Ku (12-18 GHz) bands. These results demonstrate that Cr2AlB2, as a high-efficient and oxidation-resistant absorber, is a promising candidate for microwave absorption applications and can retain good EM wave absorbing properties after high-temperature oxidation.  相似文献   

7.
The application of carbon-based materials in microwave absorption (MA) field are limited due to the impedance mismatch caused by high permittivity and low permeability. In this work, Cu2O@nanoporous carbon (Cu2O@NPC) composites derived from Cu-based MOFs are synthesized using a simple method. Variation of C and Cu2O contents in Cu2O@NPC allows the regulation of permittivity and permeability, resulting in superior ultrabroad-bandwidth absorptivity. The maximum reflection loss (RL) of Cu2O@NPC-4 is up to ?31.1 dB at 5.6 GHz, while the effective bandwidth (RL ≤ ?10 dB) can reach 7.3 GHz (10.7–18 GHz) with a matching thickness of 1.85 mm. The results of this study open a new opportunity for solving the impedance mismatch of C-based materials and obtain ultrabroad effective bandwidth.  相似文献   

8.
The solid-state reaction was adopted to prepare a series of LiCo1−xMgxO2 powders doped with different amount of Mg2+. The XRD patterns reveal single phase for all the prepared materials. The shift of the electronic structure of LiCo1−xMgxO2 has been investigated by X-ray photoelectron spectroscopy to confirm the single phase for material. Influence of dopant amount on the electromagnetic properties of LiCoO2 powders was analyzed. The dielectric and the microwave absorption properties were evaluated. Results showed that with the increase in Mg the complex permittivity decreased after increasing. Maximum values of both real part (ε′ = 16.2 at 8.2 GHz) and imaginary part (ε″ = 4.1 at 8.2 GHz) were obtained for x = 0.06. Monolayer absorbent containing 75 wt% LiCo0.94Mg0.06O2 had the peak microwave absorption properties in a thickness of 2.1 mm. The available bandwidth (<−10 dB) was obtained in 8.4-10.2 GHz and the minimum reflection loss was −50.4 dB, which indicated that LiCo1−xMgxO2 powders would be potential materials as microwave absorption.  相似文献   

9.
Here in, the effects of FeSiAl particle size on the dielectric and microwave absorption properties of FeSiAl/Al2O3 composites were studied. FeSiAl/Al2O3 composites containing 18–25 μm, 25–48 μm, and 48–75 μm FeSiAl particles were prepared by hot-pressed sintering based on uniformly mixed FeSiAl and Al2O3 powders. Results show that the real permittivity and the imaginary permittivity are significantly promoted with increasing FeSiAl particle size, which is ascribed to the enhanced interfacial polarization and conductance loss. In addition, the favorable matching impedance and suitable attenuation coefficient enabled the composite containing 25–48 μm FeSiAl powder to show a minimum reflection loss of ?34.4 dB at 11.7 GHz and an effective absorption bandwidth (<-10 dB) of 1.4 GHz in 11.0–12.4 GHz, when the thickness is 1.1 mm. By adjusting the thickness to 1.4 mm, the effective absorption bandwidth of the composite reaches a maximum value of 2.0 GHz in the 8.3–10.3 GHz range, indicating tunable, strong, and highly efficient microwave absorption performance.  相似文献   

10.
《Ceramics International》2016,42(4):5278-5285
Activated hollow carbon fibers (ACHFs) decorated with carbon nanotubes (CNTs) and nickel nanoparticles (CNTs–Ni–ACHFs) were prepared by thermal reduction and chemical vapor deposition technique. Microwave reflection loss, permittivity and permeability of CNTs–Ni–ACHFs composites as novel electromagnetic wave absorbents were studied in the frequency range of 2–18 GHz. It was demonstrated that CNTs–Ni–ACHFs absorbents possessed the best microwave absorbing performances whose minimum reflection loss was −43.457 dB at 13.10 GHz with a thickness of 2.0 mm, which is much better than those of Ni–ACHFs and ACHFs samples. The dielectric polarizations and magnetic loss derived from the effect of the porous structures, Ni nanoparticles, and defects in the CNTs–Ni–ACHFs composites are playing an important role for the excellent microwave absorbing performances.  相似文献   

11.
In the frequency range of 2–18 GHz, the microwave absorbing properties of a carbon black/silicone rubber blend were investigated by changing the carbon black content and the thickness. The real part (ε′) and the imaginary part (ε″) of permittivity of the blends were calculated from the S‐parameters measured by a network analyzer. The reflection loss was simulated by using ε′ and ε″. The reflection loss less than ?10 dB could be obtained in the frequency range of 9.6ε13.5 GHz from the sample with 10 wt% of carbon black at 1.9 mm of thickness.  相似文献   

12.
《Ceramics International》2021,47(21):30448-30458
Morphological configuration plays a vital role in regulating the absorption performance of magnetic materials. Herein, a novel challenge is discussed on electromagnetic loss features of two hard and soft magnetic materials with hierarchical brain-coral like structure and rod-like structure. In this study, pure SrFe12O19 (Sr) as hard magnetic component and CoFe2O4 (Co) as soft magnetic component with two distinct morphologies were successfully synthesized by facile hydrothermal and solvothermal methods. In the first approach, electromagnetic loss features of rod and brain-coral-like particles were investigated, and in second approach -according to the obtained results-microwave absorption performance of a mixture of hard/soft magnetic components with hierarchical structure were evaluated. The minimal reflection loss (RL) for brain-coral-like particles of individual Sr and Co samples were −17.6 dB (at 18.8 GHz with 9 mm thickness) and −31.2 dB (at 8.1 GHz with 10 mm thickness), respectively, which show far better performance than rod-like structure. Remarkably, the composite of Sr and Co micro-particles with hierarchical structure exhibited strong RL value of −38 dB with 2.6 GHz effective absorption bandwidth at the thickness of 2.5 mm, with a filling ratio of 40 wt%. According to the results, it is founded that the electromagnetic loss features are crucially boosted via hierarchical configuration of magnetic materials. Increment in complex permittivity and permeability, accounting for the formation of cross-linked networks in the hierarchical structure, promoted the interfacial polarization phenomena with different relaxation times and appearance of multi resonance peaks.  相似文献   

13.
《Ceramics International》2016,42(14):15585-15591
(x)Ni0.4Zn0.6Fe2O4+(1−x)Ba0.6Sr0.4TiO3 composite ceramics with x=0.6, 0.7, 0.8, 0.9 and 1 were synthesized by solid state reaction method. The high dense composites have only two phases, i.e., Ni0.4Zn0.6Fe2O4 and Ba0.6Sr0.4TiO3. The permittivity ε′ of the composites decreases slightly with the frequency increasing from 3 MHz to 1 GHz. The permittivity ε′′ of the composites also shows a little increase with frequency in the 3 MHz–1 GHz range. The permeability displays a relaxation resonance within the 3 MHz–1 GHz frequency range. The permeability μ′ increases while the cut-off frequency decreases with the Ni0.4Zn0.6Fe2O4 concentration, obeying the Snoek's law μifr=constant. The permittivity ε′ of the composites decreases with Ni0.4Zn0.6Fe2O4 concentration. The composites have a relatively higher ε′ than the pure Ni0.4Zn0.6Fe2O4 at 1–10 GHz. In the frequency range of 1–10 GHz, the magnetic permeability μ′ reaches its maximum and μ′′ shows a minimum for the composite with x=0.6 in all ceramics. The permeability μ′ of the composites decreases with dc magnetic field at 1–10 GHz. The permeability shows a domain wall resonance, and the resonance frequency shifts to high frequency with the dc magnetic field. The permittivity was also influenced by the dc magnetic field due to a magnetodielectric effect.  相似文献   

14.
《Ceramics International》2016,42(13):14548-14556
Carbon coated magnetite nanoparticles with two different shell thicknesses were synthesized by a facile two-step method using glucose as a source of carbon. At first, hematite nanoparticles were synthesized by hydrothermal process. Carbon shells were coated on hematite nanoparticles by hydrothermal carbonization process, and the carbon coat thickness on particles was controlled by the amount of glucose in the second step. The hematite-carbon core-shell nanoparticles were then heat treated under argon gas flow in order to produce magnetite-carbon nanocapsules. Phase transformation during the heat treatment was studied by X-ray diffraction (XRD). The existence of carbon shell on nanoparticles was investigated by transmission electron microscopy (TEM) and Raman spectroscopy. The effect of carbon shell thickness variation on the relative complex permittivity (εr=ε′+iε″) and permeability (μr=μ′+iμ″) was studied in a frequency range of 1–18 GHz. The effect of carbon shell thickness on the Fe3O4-C nanoparticles reflection loss was also studied. The results showed that the microwave properties of the carbon coated magnetite nanoparticles can be controlled effectively by adjusting carbon shell thickness.  相似文献   

15.
《Ceramics International》2016,42(15):17116-17122
A magnetic reduced graphene oxide (MRGO) composite consisting of graphene oxide and Fe3O4 particles in the range of 5–20 nm has been prepared by the one-pot hydrothermal process. RGO nanosheets provide flexible substrates for nanoparticle decoration, while Fe3O4 nanoparticles can also effectively prevent nanosheets to restack each other. Compared with previously literature, the synthesized RGO-Fe3O4 composite exhibits excellent electromagnetic wave absorption. The minimum reflection loss (RL) value of −49.05 dB has been observed at 14.16 GHz with a thickness of 2.08 mm. The absorption bandwidth (RL<−10 dB) corresponding to the minimum RL is 4.60 GHz. The electromagnetic wave absorption properties of the RGO-Fe3O4 composite have been interpreted through the quarter-wavelength matching model.  相似文献   

16.
A kind of glucose-derived carbon-rich silicon oxycarbide (glucose-SiOC) nanocomposite with excellent electromagnetic wave absorbing performance is obtained via solvothermal method, and then pyrolyzed at high temperature (1300°C and 1400°C) under argon atmosphere. The structural evolutions and the electromagnetic wave absorbing capabilities of the nanocomposites have been systematically investigated. The resultant 3 mol/L glucose-SiOC ceramic exhibits a heterostructure, in which nanosized glucose-derived carbon and SiC particles decorate on amorphous SiOC network. Benefitting from the nanosized carbon, SiC particles and the heterostructure attributes, the 3 mol/L glucose-SiOC ceramic displays a strong electromagnetic wave-absorbing property. The minimum reflection coefficient of the 3 mol/L glucose-SiOC ceramic pyrolyzed at 1400°C reaches −27.6 dB at 13.8 GHz. The widest effective absorption bandwidth attains 3.5 GHz in Kμ-band. This work opens up a novel and simple route to fabricate polymer-derived ceramics with excellent electromagnetic wave-absorbing performance.  相似文献   

17.
Controlling material structure and its electromagnetic properties, including complex permittivity and permeability, could enhance the microwave absorption performance of the material in terms of reflection loss and effective absorption bandwidth. In this study, La-substituted barium hexaferrite, Ba3−xLaxCo2Fe24O41 (x = 0, 0.1, 0.3, and 0.5) compounds were successfully prepared using the solid-state reaction method, and their corresponding microstructures, static magnetic properties, and electromagnetic features in 2–18 GHz were investigated. The doping of La content increased saturation magnetization, coercivity, and remnant magnetization. The Ba2.7La0.3Co2Fe24O41 epoxied sample with 3.5 mm thickness possessed an excellent microwave absorption of −47.3 dB at 3.52 GHz, and its corresponding effective absorption bandwidths were 3.75 GHz (2.25–6 GHz) and 0.57 GHz (17.43–18 GHz). It is shown that doping with various La concentrations on Ba3Co2Fe24O41 can be used as an effective technique to tune the performance of microwave absorbers based on barium hexaferrite.  相似文献   

18.
Reduced graphene oxide (RGO) with a layered and porous structure was synthesized by thermal exfoliation of graphite oxide. Synthesized RGO is very light weight and flaky. The formation of RGO was studied using Fourier transform infrared and Raman spectroscopies, X-ray diffraction and scanning electron microscopy. Composites were prepared by dispersing 2%, 4% and 10% by weight of the synthesized RGO into nitrile butadiene rubber (NBR) matrix. Microwave absorption properties of RGO/NBR composites were investigated by measuring their complex permittivity and permeability by using waveguide method. Simulation studies show that 10 wt.% of graphene oxide in NBR matrix exhibits high values of reflection loss (>10 dB) over a wide frequency range 7.5–12 GHz and maximum loss is 57 dB at 9.6 GHz at a thickness of 3 mm.  相似文献   

19.
By using a catalytic growth procedure, carbon nanotubes (CNTs) are in situ formed on reduced graphene oxide (RGO) sheet at 600 °C. CNTs growing on RGO planes through covalent C–C bond possess lower interfacial contact electrical resistance. As a hybrid structure, the CNTs/graphene (CNT/G) are well dispersed into poly (dimethyl siloxane). The hybrid combining electrically lossy CNTs and RGO, which disperses in electrically insulating matrix, constructs an electromagnetic wave (EM) absorbing material with ternary hierarchical architecture. The interfacial polarization in heterogeneous interface plays an important role in absorbing EM power. When the filler loading is 5 wt.% and thickness of absorber is 2.75 mm, the minimum value of reflection coefficient and the corresponding frequency are −55 dB and 10.1 GHz, and the effective absorption bandwidth reaches 3.5 GHz. Therefore, combining the CNTs and graphene sheet into three-dimensional structures produces CNT/G hybrids that can be considered as an effective route to design light weight and high-performance EM absorbing material, while the effective EM absorption frequency can be designed.  相似文献   

20.
The preparation and characterization of a biobased electromagnetic absorbing composites derived from natural lacquer as a renewable resource with microwave‐absorption fillers, including Ni–Zn ferrite and carbonyl iron (CI) as magnetic metals and soot and carbon nanotube (CNT) as carbon materials, were investigated in terms of the gel content, hardness, drying properties, and electromagnetic absorption properties. Interestingly, composites with ferrite and CI contained up to 320 and 550 wt %, respectively, of these compounds. This quite high loading capacity of the metal fillers in a natural‐lacquer base could have been due to the high compatibility between the filler and the natural lacquer; this indicated that the natural lacquer worked as a binder for these metals. The morphology of the biobased composite was characterized by scanning electron microscopy. The electromagnetic absorption properties of composites were characterized in the frequency range from 0.05 and 20 GHz by the reflection loss (RL) measurement method in terms of the kind of fillers and filler loading. The natural lacquer did not affect the absorption properties of the fillers. Biobased composites showed over 99% electromagnetic absorption in the frequency range 3.0–4.0 GHz for 280 wt % ferrite and 8.9–9.7 GHz for 200 wt % CI. Conversely, 10 and 20 wt % soot exhibited good performance (RL < ?20 dB) between 16.5 and 17.3 and between 8.8 and 9.2 GHz, respectively. The areas with RL values of less than ?20 dB of the CNT composites were 10.4–11.0 GHz for 5 wt % and 14.6–15.2 GHz for 10 wt %. Hence, natural lacquer can be used as a binder material for electromagnetic absorption composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44131.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号