首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(13):21448-21460
Tetragonal structured Sr3AlO4F is highly strained as reported from its global instability index estimation. Moreover, our results of X-ray photoelectron spectroscopy (XPS) also ascertained that the structure of Sr3AlO4F is highly strained with oxygen vacancies. Herein, aliovalent substitutions of divalent Sr ions with trivalent Ln (Ln = Gd/Y) ions were carried out to improve the stability of Sr3AlO4F lattice, which subsequently enhanced the photoluminescence in a series of Sr2.9-3x/2LnxAlO4F: 0.1Eu3+ phosphors. All the phosphors showed intense red-orange emission (5D07F1,2) at excitation with UV and near-UV light. The critical concentrations of Gd3+ and Y3+ up to which the Eu3+ emission intensities increased linearly were observed to be x = 0.09 and x = 0.07, respectively. Nevertheless, further enhancement in the Eu3+ luminescence of the optimized phosphors was realized by subsequently annealing in low oxygen atmospheres. The enhancement in oxygen deficiency during the post-annealing in Ar or vacuum led the energy transfer (O2--Eu3+) to a greater extent which afterward increased the Eu3+ luminescence. The optimized Sr2.765Gd0.09AlO4F: 0.1Eu3+ and Sr2.795Y0.07AlO4F: 0.1Eu3+ phosphors showed high red color purity (~99%), as well as CIE coordinates of (0.62, 0.38), indicated that these phosphors could be appropriate red-emitting components for making flexible optical films for many lighting devices. Therefore, flexible polydimethylsiloxane based films were also fabricated using optimized Sr2.765Gd0.09AlO4F: 0.1Eu3+ phosphor. The electroluminescence of a flexible PDMS-phosphor composite film showed an intense and pure red color with good thermal stability suggesting its suitability in flexible lighting and display devices.  相似文献   

2.
《Ceramics International》2020,46(1):560-567
The synthesis and photo-luminescence properties of Eu2+/Eu3+ or Ce3+/Eu3+ co-doped Sr5(BO3)3F compounds are reported. Using the Sr5(BO3)3F as the host, through the solid state reaction under the reductive atmosphere, Eu2+/Eu3+ and Ce3+/Eu3+co-doped samples were prepared. These compounds exhibit good photo-luminescence properties. Under the excitation of 376 nm, an unusual red orange emission coming from the Eu2+ ions can be obtained in Eu ions doped Sr5(BO3)3F, which exhibits a broadband emission in the range of 450–800 nm with the peak at around 600 nm. At the same time, the characteristic f-f excitation and emission of Eu3+ can improve and adjust the Eu2+ emission in Eu3+/Eu2+ codoped Sr5(BO3)3F. In addition, the adjustable luminescence properties from blue to white of Sr5(BO3)3F:Ce3+, Eu3+ are investigated. The energy transfer behavior from Ce3+ to Eu3+ was confirmed. In the spectra of the co-doped samples, we can hardly observe the characteristic peak of Eu2+, because Ce4+ can oxidize Eu2+ to Eu3+, and Ce4+ itself is reduced to Ce3+. The CIE coordinates from (0.2758, 0.2420) to (0.3857, 0.3015) show Sr5(BO3)3F:3%Ce3+, x%Eu3+ (x = 1,3,5,7,9) are in the white light emission region. All results demonstrate that the Sr5(BO3)3F:Eu3+/Eu2+ and Sr5(BO3)3F:Ce3+/Eu3+ phosphors have good application prospects for LED plant growth and white LED, respectively. The bond energy method was used to explain the reason why the Eu2+/Eu3+ ion instead of only Eu2+ and Ce3+/Eu3+ instead of Ce3+/Eu3+/Eu2+ can exist in the host Sr5(BO3)3F. The theoretical analysis agree well with the experimental result.  相似文献   

3.
Y1.94MAl4SiO12:0.06Ce3+ (M = Ba, Sr, Ca, Mg) phosphors were successfully prepared through a classic solid-state reaction method. The crystal structures, photoluminescence spectra, quantum yields, and thermal stabilities of the phosphors were investigated in detail. The results indicate that all Y1.94MAl4SiO12:0.06Ce3+ phosphors maintain the crystal structure of garnets. The emission peaks of Y1.94MAl4SiO12:0.06Ce3+ (M = Ba, Sr, Ca, Mg) phosphors are located at 537, 538, 554, and 565 nm, respectively. A red-shift trend of emission peak is observed with decreasing M radius, which can be ascribed to the increase in the crystal-field splitting in the Ce3+ 5d level owing to the co-doping of M2+−Si4+. Under 460 nm excitation, the luminescence quantum yields and thermal stabilities of the Y1.94MAl4SiO12:0.06Ce3+ phosphors decreased with the decrease of M radius. The IQE of the Y1.94BaAl4SiO12:0.06Ce3+ phosphor is 92.89%, and the resistance to thermal quenching is improved to be 93.32% at 150°C. In addition, the color shifts of Y1.94MAl4SiO12: 0.06Ce3+ phosphors with increasing temperature are all tiny, which also demonstrates good resistance to thermal quenching of luminescence. The linear shrinkage of Y1.94MAl4SiO12:0.06Ce3+ phosphors is significantly improved compared with that of YAG: Ce3+, which is expected to generate Y1.94MAl4SiO12:0.06Ce3+ transparent/translucent ceramics and fabricate high-powder w-LEDs for high-quality solid-state lighting in the future.  相似文献   

4.
Blue‐emitting phosphor of Ce3+‐activated fluorosilicate apatite Ba2Y3[SiO4]3F was prepared via conventional solid‐state reaction method. The X‐ray powder diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) excitation and emission spectra, and the decay curves (lifetimes) were applied to characterize the phosphors. The effects of Ce3+ activator concentration on the luminescence properties were investigated. Ba2Y2.85Ce0.15[SiO4]3F exhibits the brightest blue emission with CIE coordinates of (= 0.231, = 0.301). The crystallographic site of Ce3+ ions in Ba2Y3[SiO4]3F lattices was identified. Two kinds of crystallographic Ce3+ occupying MI and MII sites in Ba2Y3[SiO4]3F lattices result in two distinct emission centers. The internal PL quantum efficiency, the temperature‐dependent luminescence, and the activation energy of thermal quenching were investigated to evaluate the potential application. This is a new kind of blue‐emitting phosphor based on apatite structure.  相似文献   

5.
Ce3+ and Tb3+ co-doped Sr2B2O5 phosphors were synthesized by the solid-state method. X-ray diffraction (XRD) was used to characterize the phase structure. The luminescent properties of Ce3+ and Tb3+ co-doped Sr2B2O5 phosphors were investigated by using the photoluminescence emission, excitation spectra and reflectance spectra, respectively. The excitation spectra indicate that this phosphor can be effectively excited by near ultraviolet (n-UV) light of 317 nm. Under the excitation of 317 nm, Sr2B2O5:Ce3+,Tb3+ phosphors exhibited blue emission corresponding to the fd transition of Ce3+ ions and green emission bands corresponding to the ff transition of Tb3+ ions, respectively. The Reflectance spectra of the Sr2B2O5:Ce3+,Tb3+ phosphors are noted that combine with Ce3+ and Tb3+ ion absorptions. Effective energy transfer occurred from Ce3+ to Tb3+ in Sr2B2O5 host due to the observed spectra overlap between the emission spectrum of Ce3+ ion and the excitation spectrum of Tb3+ ion. The energy transfer efficiency from Ce3+ ion to Tb3+ ion was also calculated to be 90%. The phosphor Sr2B2O5:Ce3+,Tb3+ could be considered as one of double emission phosphor for n-UV excited white light emitting diodes.  相似文献   

6.
《Ceramics International》2016,42(15):16659-16665
In this paper, a series of Ce3+ doped Sr2MgAl22O36 (SMA) phosphors have been prepared by high temperature solid-state reaction method. The phase structure of prepared samples was checked by the powder X-ray diffraction (XRD). The morphology of the samples was inspected using a field-emission scanning electron microscope (SEM). Under different UV radiation, this phosphor exhibits different emission bands due to the Ce3+ ions located at different lattice sites. The corresponding luminescence and energy transfer mechanisms have been proposed in detail. The phosphor exhibits different concentration quenching mechanisms because the Ce3+ ions substitute two different crystallographic sites in the host. Moreover, the temperature dependent emission properties of SMA:Ce3+ were conducted from 30 °C to 200 °C, as much as 72.96% of the room-temperature emission intensity is retained at 150 °C. The SMA:Ce3+ phosphor exhibits bright blue emission with CIE coordinates (x=0.16, y=0.12) under UV excitation. The results indicate that SMA:Ce3+ phosphor has great potential applications in UV-pumped light emitting diodes.  相似文献   

7.
《Ceramics International》2019,45(11):14360-14365
A novel luminescent material Sr5(BO3)3F:x%Eu3+ was synthesized for the first time by a high temperature solid phase reaction in an air atmosphere. The luminescence properties and site occupancy of Sr5(BO3)3F:x%Eu3+ phosphors were studied. The XRD powder diffraction data imply that the series of targets synthesized are pure phases. After repeated experiments, it was found that the main peak position of the excitation and emission spectra changed greatly when the same concentration or different concentration of Eu3+ was doped, and two kinds of spectral phenomena appeared. First, the position of the broadband excitation peak is about 335 nm, and the position of the strongest emission peak belongs to the 5D07F0 transition of Eu3+ at 572 nm. Second, the position of the broadband excitation peak is about 275 nm, and the position of the strongest emission peak belongs to the 5D07F2 transition of Eu3+ at 619 nm. These imply that different lattice sites are occupied by Eu3+ in Sr5(BO3)3F. At the same time, the unusually strong 5D07F0 transition illustrates the presence of interstitial oxygen and anomalous crystal field strength in system. A theoretical calculation method of bond energy was applied to study the site occupancy of Eu3+, which shows that any one of Sr1, Sr2, and Sr3 has the possibility of being occupied by Eu3+. Therefore, our test results are consistent well with the theoretical analysis.  相似文献   

8.
This work investigated the near‐infrared (NIR) emission properties of mCe3+, xNd3+ codoped Sr3?m?x(Si1?m?xAlm+x)O5 phosphors. Samples with various doping concentrations were synthesized by the high‐temperature solid‐state reaction. Al3+ ions have the ability to promote Ce3+ ions to enter into the Sr2+ sites and to improve the visible emission of Ce3+. Thus the NIR emission of Nd3+ is enhanced by the energy‐transfer process, which occurred from Ce3+ to Nd3+. The device based on these NIR emission phosphors is fabricated and combined with a commercial c‐Si solar cell for performance testing. Short‐circuit current density of the solar cell is increased by 7.7%. Results of this work suggest that the Sr2.95Si0.95Al0.05O5:0.025Ce3+, 0.025Nd3+ phosphors can be used as spectral convertors to improve the efficiency of c‐Si solar cell.  相似文献   

9.
Sr9Mg1.5(PO4)7:Eu2+ has recently been reported as a promising blue light-excited orange–yellow phosphor that can be used in white LED device. Here, Ce3+-codoping is found to be an effective strategy to improve the luminescence performance of Sr9Mg1.5(PO4)7:Eu2+ phosphor. The coexistence of Eu2+ and Eu3+ ions has been verified via photoluminescence spectral analysis. The reduction of Eu3+ to Eu2+ in Sr9Mg1.5(PO4)7 lattice cannot be completed in a reducing atmosphere, but can be promoted through codoping with Ce3+ ions to a great extent, which finally increase the effective concentration of Eu2+ in the crystal lattice. The Eu3+−Eu2+ reduction mechanism is analyzed using a charge compensation model. This work not only achieves enhanced luminescence of the Sr9Mg1.5(PO4)7:Eu2+ phosphor by codoping with Ce3+ ions, but also provides new insights into the design of Ce3+/Eu2+ codoped luminescent materials.  相似文献   

10.
The maximum solubility of aluminum cations in the perovskite lattice of Sr0.7Ce0.3Mn1−xAlxO3−δ is approximately 15%. The incorporation of Al3+ increases oxygen ionic transport due to increasing oxygen nonstoichiometry, and decreases the tetragonal unit cell volume and thermal expansion at temperatures above 600 °C. The total conductivity of Sr0.7Ce0.3Mn1−xAlxO3−δ (x = 0–0.2), predominantly electronic, decreases with aluminum additions and has an activation energy of 10.2–10.9 kJ/mol at 350–850 °C. Analysis of the electronic conduction and Seebeck coefficient of Sr0.7Ce0.3Mn0.9Al0.1O3−δ, measured in the oxygen partial pressure range from 10−18 to 0.5 atm at 700–950 °C, revealed trends characteristic of broad-band semiconductors, such as temperature-independent mobility. The temperature dependence of the charge carrier concentration is weak, but exhibits a tendency to thermal excitation, whilst oxygen losses from the lattice have an opposite effect. The role of the latter factor becomes significant at temperatures above 800 °C and on reducing p(O2) below 10−4 to 10−2 atm. The oxygen permeability of dense Sr0.7Ce0.3Mn1−xAlxO3−δ (x = 0–0.2) membranes, limited by both bulk ionic conduction and surface exchange, is substantially higher than that of (La, Sr)MnO3-based materials used for solid oxide fuel cell cathodes. The average thermal expansion coefficients of Sr0.7Ce0.3Mn1−xAlxO3−δ ceramics in air are (10.8–11.8) × 10−6 K−1.  相似文献   

11.
《Ceramics International》2017,43(17):15107-15114
A series of eulytite-type Sr3Y1-x(PO4)3:xEu3+ (x = 0–0.13) and Sr3-yY(PO4)3:yEu2+ (y = 0–0.10) phosphors were successfully synthesized via gel-combustion and subsequent calcination in O2 and Ar/H2 atmospheres at 1250 °C, respectively. Detailed crystal structure analysis via Rietveld refinement showed that the phosphors were crystallized in the cubic system (space group I-43d, No. 220), in which the Eu3+ and Eu2+ activators reside at the Y3+ and Sr2+ sites, respectively. The trivalent Eu3+ ions (CN = 6) exhibited typical narrow-band luminescence via intra-4f6 transitions, with the red emission at ~ 615 nm being dominant (5D07F2 transition, FWHM = 15.9 ± 0.2 nm). The divalent Eu2+ ions (CN = 6 and 9) showed broad-band luminescence ranging from light-blue to blue via 4f65d1 → 4f7 transitions (FWHM = 115 ± 2 nm). The optimal Eu3+ and Eu2+ concentrations were determined to be 10 at% (x = 0.10) and 7 at% (y = 0.07), respectively, and the mechanisms of concentration quenching were discussed. The excitation/emission properties, fluorescence decay kinetics, CIE chromaticity, and particularly the rarely addressed thermal stability of the phosphors were investigated in detail.  相似文献   

12.
A series of Eu2+ and Ce3+ doped/co-doped Sr3Al2O5Cl2 afterglow phosphors that presented various bright colors were successfully synthesized via high temperature solid state reaction. The structure and luminescence properties of the obtained samples were characterized by X-ray powder diffraction (XRD), photoluminescence (PL) spectra and decay curves as well as the thermoluminescence (TL) glow curves. The XRD results showed that all the phase could be indexed to the orthorhombic structure with the space group P212121. After being exposed to a 254 nm or 365 nm mercury lamp, blue/yellow-orange afterglow emissions with broad bands peaking around 620 nm/435 nm, which were ascribed to the characteristic 4f65d–4f7/5d1–4f1 transitions of Eu2+/Ce3+, could be observed in phosphors of Sr3Al2O5Cl2:Eu2+/Sr3Al2O5Cl2:Ce3+, respectively. Because of the overlap spectral range between the Sr3Al2O5Cl2:Eu2+ and Sr3Al2O5Cl2:Ce3+ phosphors, the energy transfer (ET) from Ce3+ to Eu2+ occurred. The related ET process was discussed in detail. Moreover, the incorporation of Ce3+ could significantly prolong the afterglow duration of Sr3Al2O5Cl2:Eu2+ phosphor, which was due to the increase of trap concentration. Consequently, 6 h of the afterglow duration could be observed in Sr3Al2O5Cl2:1.0%Eu2+, 0.5%Ce3+ sample, exhibiting much longer than that of Sr3Al2O5Cl2: 1.0%Eu2+ (3 h). From the afterglow decay curves and the fitting results, the optimal concentration of Ce3+ for the enhanced afterglow property was experimentally determined to be 0.5%.  相似文献   

13.
《应用陶瓷进展》2013,112(8):494-498
Abstract

Sr1?xCexMnO3 (SCM, 0·1≤x≤0·4) powders were synthesised by an ethylenediaminetetraacetic acid citrate complexing process, and their properties were investigated. The synthesised Sr1?xCexMnO3 powders showed a pure perovskite phase, whereas the composition with x?=?0·4 had second phases. The unit cell volumes increased with increasing Ce content because substituted Ce ions formed some Mn3+ ions, which have a larger ionic radius than Mn4+. The electrical conductivity improved with increasing Ce content up to x?=?0·3 (291 S cm?1 at 750°C), revealing a double exchange interaction. Although the electrical conductivity was increased by doping Ce ions, the polarisation resistance increased due to the increase in lattice distortion with doping Ce content. The substitution of Ce ions for Sr in SrMnO3 led to the formation of larger Mn3+ ions than Mn4+ ions and lattice distortion, which would affect the electrical and oxygen ion conductivity.  相似文献   

14.
《Ceramics International》2017,43(18):16376-16383
Phase composition, structure stability, cations valance state, and relaxor-like-dielectric behavior of Sr(1–3/2x)CexTiO3 (SCT, x = 0.3, 0.4) solid solution were investigated systematically. The Sr(1–3/2x)CexTiO3 samples appear to be single phase within the detection limits of the technique, whereas the solid solution exhibits the higher angle doublet and triplet peak splitting associated with (200) and (321). X-ray photoelectron spectroscopy (XPS) analysis showed that the Ce substitution induces change in the cations valance state upon oxygen vacancies formation. The system exhibits features of low-frequency dependent relaxor-like-dielectric behavior rather than sharp frequency-independent anomalies. Besides this, two kind of relaxations were detected in the temperature range ≥ 350 °C. According to the electric modulus and ac conductivity analysis, the relaxor-like-dielectric behavior results from the long-range conduction associated with ionized vacancies and mixed state of Ti3+/4+ and Ce3+/4+ cations.  相似文献   

15.
Ce3+-doped Y2O3-Al2O3-Sc2O3 ternary ceramics with varying Sc2O3 were prepared via solid-state-reactive method. Their constitutions, crystal structures, microstructures and luminescence properties were thoroughly investigated by powder X-ray diffraction, 45Sc and 27Al solid-state nuclear magnetic resonance (NMR), scanning electron microscope (SEM) as well as photoluminescence (PL) characterizations. Single-phased YSAG transparent ceramics with garnet structure and homogeneous microstructures can be obtained. The NMR results suggest that partial [AlO6] octahedrons are converted into [AlO4] tetrahedrons with increased Sc3+. Partial Sc3+ occupies the remaining octahedral sites, the other Sc3+ occupies the dodecahedral sites. The luminescence spectra of the as-prepared ceramics show broadened emission bands with excessive Sc3+ incorporation. More significantly, the solubility of Ce3+ in garnet ceramics extensively increases due to the incorporation of Sc3+, leading to a considerable red-shift and broadening of emission spectra with little luminescence decline, indicating that the new ceramic phosphors are promising for white-light illumination with improved color rendering index.  相似文献   

16.
《Ceramics International》2023,49(4):5884-5892
A series of novel negative temperature coefficient (NTC) thermistor materials based on La1-xCexAlO3 (0 ≤ x ≤ 0.2) ceramics were synthesized via the solid-state route. X-ray diffraction results confirmed the successful doping of Ce in the La1-xCexAlO3 crystal and the formation of a good solid solution. Scanning electron microscopy results indicated that Ce doping is beneficial for grain growth and reduces the porosity of the samples. With the increase in the Ce doping amount, the average grain size increased from 2.1793 to 10.7344 μm, and densities of the ceramics increased from 93.15% to 99.26%. The temperature vs resistance curve indicated that Ce doping reduces the resistivity of LaAlO3 materials, while reducing the B200/1400 value of the LaAlO3 ceramic. For a doping amount of 0.2, the B200/1400 value of the LaAlO3 ceramic decreased from 18175.1 to 4897.7K, and the resistivity at 1000 °C decreased from 68971.87 to 1105.15 Ω cm. In addition, the La1-xCexAlO3 (0 ≤ x ≤ 0.2) series materials exhibited good linear NTC characteristics. X-ray photoelectron spectroscopy results revealed that the resistivity of the LaAlO3 materials decreased after Ce doping owing to the transformation between the Ce4+ and Ce3+ valence states,and the concentration of Ce3+ increased with the increase in the Ce doping amount. Ce3+ increases the concentration of oxygen vacancies, decreasing the resistance. Impedance analysis findings suggested that the resistance of the La1-xCexAlO3 (0 < x ≤ 0.2) material mainly originates from the grain. These results indicate that Ce doping is an effective method to reduce the resistivity of LaAlO3. Consequently, La1-xCexAlO3 (0 ≤ x ≤ 0.2) is a promising material for NTC applications.  相似文献   

17.
In this study, Sr2+, Ca2+, Zn2+, and Mg2+ ions act to tune the emission band to the blue-cyan region in BaxSryB2O5:Ce3+ (BSBO), BaxCazB2O5:Ce3+ (BCBO), BaxZnuB2O5:Ce3+ (BZBO), and BaxMgvB2O5:Ce3+ (BMBO) phosphors. A red shift occurs with the increase of Sr2+, Ca2+, Zn2+, and Mg2+ concentration, and a blue shift occurs when the concentrations of Sr2+, Ca2+, Zn2+, and Mg2+ exceed the critical value. The emission color can be tuned from deep blue (0.15, 0.12) to cyan (0.16, 0.27) upon 365 nm UV lamp excitation due to the crystal field splitting and centroid shifts. The excitation band shift to long wavelength by introducing ions, so that the synthesized phosphor can be better matched with the n-UV chip. The emission intensity slowly decreases with the temperature increasing. Therefore, the BMBO:Ce3+, BZBO:Ce3+, BCBO:Ce3+, and BSBO:Ce3+ phosphors with relatively good thermal stability were synthesized, which could have potential applications in the n-UV white LEDs.  相似文献   

18.
In this study, 0.94Mg(1-3x/2)CexTiO3−0.06(Ca0.8Sr0.2)TiO3 (MCexT−CST, 0≤x≤0.01) composite ceramics were prepared at a low temperature of 1175°C by using the 50-nm-sized powders. The effects of Ce3+ doping on crystalline phase, microstructure, and microwave dielectric properties of MCexT−CST were studied. A main ilmenite (Mg,Ce)TiO3 phase and a minor perovskite (Ca0.8Sr0.2)TiO3 phase coexist well with the appearance of impurity MgTi2O5 phase in MCexT−CST. The dielectric properties of MCexT−CST are affected by the molecular polarizability, the impurity phase, and the Ce3+ doping. The replacement of Mg2+ by high valence Ce3+ could effectively inhibit the formation of oxygen vacancy, resulting in the enhancement of Q×f. When x = 0.005, MCexT−CST exhibits microwave dielectric properties with a moderate εr of 21.5, a high Q×f of 67 000 GHz, and a near-zero τf of −0.74 ppm/°C. The results reveal that the Ce3+ substitution is a prospective approach to optimize the microwave dielectric properties of MgTiO3-based ceramics.  相似文献   

19.
《Ceramics International》2019,45(16):20316-20322
Tb3+ is a typical green emitting luminescence center in inorganic compounds. However, the absorption of Tb3+ is very weak in ultraviolet spectral region (from 240 to 400 nm). Ce3+ is often used as a sensitizer to transfer energy to Tb3+. In this paper, Ce3+ and Tb3+ were co-doped into a novel aluminates-borates LaAl2.03B4O10.54. Ce3+ can absorb UV light (from 240 to 340 nm) and transfer absorbed energy to co-doped Tb3+ effectively and bring bright green emission of Tb3+. The crystal structure and fluorescence spectra of phosphors, the efficiency of energy transfer between Ce3+ and Tb3+, decay dynamics, the thermal stability and internal quantum efficiency of luminescence have been investigated in detail. These results indicate that the color tunable LaAl2.03B4O10.54: Ce3+, Tb3+ phosphor is a potential green-emitting material. Especially, analysis about the relationship of the doping concentration of luminescence centers and thermal stability of luminescence points out a feasible way to enhance the thermal stability of luminescence in the future.  相似文献   

20.
Using the solid‐state reaction method, Ce3+,Tb3+‐coactivated Si5AlON7 (Si6?zAlzOzN8?z, = 1) phosphors were successfully synthesized. The obtained phosphors exhibit high absorption and strong excitation bands in the wavelength range of 240–440 nm, matching well with the light emitting‐diode (LED) chip. The ET from Ce3+ to Tb3+ ions in Si5AlON7:Ce3+,Tb3+ has been studied and demonstrated by the luminescence spectra and decay curves. Moreover, the phosphors show tunable emissions from blue to green by tuning the relative ratio of the Ce3+ to Tb3+ ions. Thermal quenching properties of Si5AlON7:Ce3+,Tb3+ had also been investigated and the quenching temperature is ~190°C. These results show that Si5AlON7:Ce3+,Tb3+ could be a promising candidate for a single‐phased color‐tunable phosphor applied in UV‐chip pumped LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号