首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Accurate estimates of vegetation biophysical variables are valuable as input to models describing the exchange of carbon dioxide and energy between the land surface and the atmosphere and important for a wide range of applications related to vegetation monitoring, weather prediction, and climate change. The present study explores the benefits of combining vegetation index and physically based approaches for the spatial and temporal mapping of green leaf area index (LAI), total chlorophyll content (TCab), and total vegetation water content (VWC). A numerical optimization method was employed for the inversion of a canopy reflectance model using Terra and Aqua MODIS multi-spectral, multi-temporal, and multi-angle reflectance observations to aid the determination of vegetation-specific physiological and structural canopy parameters. Land cover and site-specific inversion modeling was applied to a restricted number of pixels to build multiple species- and environmentally dependent formulations relating the three biophysical properties of interest to a number of selected simpler spectral vegetation indices (VI). While inversions generally are computationally slow, the coupling with the simple and computationally efficient VI approach makes the combined retrieval scheme for LAI, TCab, and VWC suitable for large-scale mapping operations. In order to facilitate application of the canopy reflectance model to heterogeneous forested areas, a simple correction scheme was elaborated, which was found to improve forest LAI predictions significantly and also provided more realistic values of leaf chlorophyll contents.The inversion scheme was designed to enable biophysical parameter retrievals for land cover classes characterized by contrasting canopy architectures, leaf inclination angles, and leaf biochemical constituents without utilizing calibration measurements. Preliminary LAI validation results for the Island of Zealand, Denmark (57°N, 12°E) provided confidence in the approach with root mean square (RMS) deviations between estimates and in-situ measurements of 0.62, 0.46, and 0.63 for barley, wheat, and deciduous forest sites, respectively. Despite the independence on site-specific in-situ measurements, the RMS deviations of the automated approach are in the same range as those established in other studies employing field-based empirical calibration.Being completely automated and image-based and independent on extensive and impractical surface measurements, the retrieval scheme has potential for operational use and can quite easily be implemented for other regions. More validation studies are needed to evaluate the usefulness and limitations of the approach for other environments and species compositions.  相似文献   

2.
This study investigates the applicability of empirical and radiative transfer models to estimate water content at leaf and landscape level. The main goal is to evaluate and compare the accuracy of these two approaches for estimating leaf water content by means of laboratory reflectance/transmittance measurements and for mapping leaf and canopy water content by using airborne Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) data acquired over intensive poplar plantations (Ticino, Italy).At leaf level, we tested the performance of different spectral indices to estimate leaf equivalent water thickness (EWT) and leaf gravimetric water content (GWC) by using inverse ordinary least squares (OLS) regression, and reduced major axis (RMA) regression. The analysis showed that leaf reflectance is related to changes in EWT rather than GWC, with best results obtained by using RMA regression by exploiting the spectral index related to the continuum removed area of the 1200 nm water absorption feature with an explained variance of 61% and prediction error of 6.6%. Moreover, we inverted the PROSPECT leaf radiative transfer model to estimate leaf EWT and GWC and compared the results with those obtained by means of empirical models. The inversion of this model showed that leaf EWT can be successfully estimated with no prior information with mean relative errors of 14% and determination coefficient of 0.65. Inversion of the PROSPECT model showed some difficulties in the simultaneous estimation of leaf EWT and dry matter content, which led to large errors in GWC estimation.At landscape level with MIVIS data, we tested the performance of different spectral indices to estimate canopy water per unit ground area (EWTcanopy). We found a relative error of 20% using a continuum removed spectral index around 1200 nm. Furthermore, we used a model simulation to evaluate the possibility of applying empirical models based on appositely developed MIVIS double ratios to estimate mean leaf EWT at landscape level (). It is shown that combined indices (double ratios) yielded significant results in estimating leaf EWT at landscape level by using MIVIS data (with errors around 2.6%), indicating their potential in reducing the effects of LAI on the recorded signal. The accuracy of the empirical estimation of EWTcanopy and was finally compared with that obtained from inversion of the PROSPECT + SAILH canopy reflectance model to evaluate the potential of both methods for practical applications. A relative error of 27% was found for EWTcanopy and an overestimation of leaf with relative errors around 19%.Results arising from this remote sensing application support the robustness of hyperspectral regression indices for estimating water content at both leaf and landscape level, with lower relative errors compared to those obtained from inversion of leaf and 1D canopy radiative transfer models.  相似文献   

3.
Reflectance data in the green, red and near-infrared wavelength region were acquired by the SPOT high resolution visible and geometric imaging instruments for an agricultural area in Denmark (56°N, 9°E) for the purpose of estimating leaf chlorophyll content (Cab) and green leaf area index (LAI). SPOT reflectance observations were atmospherically corrected using aerosol data from MODIS and profiles of air temperature, humidity and ozone from the Atmospheric Infrared Sounder (AIRS), and used as input for the inversion of a canopy reflectance model. Computationally efficient inversion schemes were developed for the retrieval of soil and land cover-specific parameters which were used to build multiple species and site dependent formulations relating the two biophysical properties of interest to vegetation indices or single spectral band reflectances. Subsequently, the family of model generated relationships, each a function of soil background and canopy characteristics, was employed for a fast pixel-wise mapping of Cab and LAI.The biophysical parameter retrieval scheme is completely automated and image-based and solves for the soil background reflectance signal, leaf mesophyll structure, specific dry matter content, Markov clumping characteristics, Cab and LAI without utilizing calibration measurements.Despite the high vulnerability of near-infrared reflectances (ρnir) to variations in background properties, an efficient correction for background influences and a strong sensitivity of ρnir to LAI, caused LAI-ρnir relationships to be very useful and preferable over LAI-NDVI relationships for LAI prediction when LAI > 2. Reflectances in the green waveband (ρgreen) were chosen for producing maps of Cab.The application of LAI-NDVI, LAI-ρnir and Cab-ρgreen relationships provided reliable quantitative estimates of Cab and LAI for agricultural crops characterized by contrasting architectures and leaf biochemical constituents with overall root mean square deviations between estimates and in-situ measurements of 0.74 for LAI and 5.0 μg cm− 2 for Cab.The results of this study illustrate the non-uniqueness of spectral reflectance relationships and the potential of physically-based inverse and forward canopy reflectance modeling techniques for a reasonably fast and accurate retrieval of key biophysical parameters at regional scales.  相似文献   

4.
Forest leaf area index (LAI), is an important variable in carbon balance models. However, understory vegetation is a recognized problem that limits the accuracy of satellite-estimated forest LAI. A canopy reflectance model was used to investigate the impact of the understory vegetation on LAI estimated from reflectance values estimated from satellite sensor data. Reflectance spectra were produced by the model using detailed field data as input, i.e. forest LAI, tree structural parameters, and the composition, distribution and reflectance of the forest floor. Common deciduous and coniferous forest types in southern Sweden were investigated. A negative linear relationship (r2 = 0.6) was observed between field estimated LAI and the degree of understory vegetation, and the results indicated better agreement when coniferous and deciduous stands were analysed separately. The simulated spectra verified that the impact of the understory on the reflected signal from the top of the canopy is important; the reflectance values varying by up to ± 18% in the red and up to ± 10% in the near infra-red region of the spectra due to the understory. In order to predict the variation in LAI due to the understory vegetation, model inversions were performed where the input spectra were changed between the minimum, average and maximum reflectance values obtained from the forward runs. The resulting variation in LAI was found to be 1.6 units on average. The LAI of the understory could be predicted indirectly from simple stand data on forest characteristics, i.e. from allometric estimates, as an initial step in the process of estimating LAI. It is suggested here that compensation for the effect of the understory would improve the accuracy in the estimates of canopy LAI considerably.  相似文献   

5.
The accurate quantification of gross primary production (GPP) in crops is important for regional and global studies of carbon budgets. Because of the observed close relationship between GPP and total canopy chlorophyll content in crops, vegetation indices related to chlorophyll can be used as a proxy of GPP. In this study, we justified the approach, tested the performance of several widely used chlorophyll-related vegetation indices in estimating total chlorophyll content and GPP in maize based on spectral data collected at a close range, 6 meters above the top of the canopy, over a period of eight years (2001 to 2008). The results show that GPP can be accurately estimated with chlorophyll-related indices that use near infra-red and either green or the red edge range of the spectrum. These indices provide the best approximation of the widely variable GPP in maize under both irrigated and rainfed conditions.  相似文献   

6.
This paper presents a physically-based approach for estimating critical variables describing land surface vegetation canopies, relying on remotely sensed data that can be acquired from operational satellite sensors. The REGularized canopy reFLECtance (REGFLEC) modeling tool couples leaf optics (PROSPECT), canopy reflectance (ACRM), and atmospheric radiative transfer (6SV1) model components, facilitating the direct use of at-sensor radiances in green, red and near-infrared wavelengths for the inverse retrieval of leaf chlorophyll content (Cab) and total one-sided leaf area per unit ground area (LAI). The inversion of the canopy reflectance model is constrained by assuming limited variability of leaf structure, vegetation clumping, and leaf inclination angle within a given crop field and by exploiting the added radiometric information content of pixels belonging to the same field. A look-up-table with a suite of pre-computed spectral reflectance relationships, each a function of canopy characteristics, soil background effects and external conditions, is accessed for fast pixel-wise biophysical parameter retrievals. Using 1 m resolution aircraft and 10 m resolution SPOT-5 imagery, REGFLEC effectuated robust biophysical parameter retrievals for a corn field characterized by a wide range in leaf chlorophyll levels and intermixed green and senescent leaf material. Validation against in-situ observations yielded relative root-mean-square deviations (RMSD) on the order of 10% for the 1 m resolution LAI (RMSD = 0.25) and Cab (RMSD = 4.4 μg cm− 2) estimates, due in part to an efficient correction for background influences. LAI and Cab retrieval accuracies at the SPOT 10 m resolution were characterized by relative RMSDs of 13% (0.3) and 17% (7.1 μg cm− 2), respectively, and the overall intra-field pattern in LAI and Cab was well established at this resolution. The developed method has utility in agricultural fields characterized by widely varying distributions of model variables and holds promise as a valuable operational tool for precision crop management. Work is currently in progress to extend REGFLEC to regional scales.  相似文献   

7.
The objective of this study is to evaluate whether the retrieval of the leaf chlorophyll content and leaf area index (LAI) for precision agriculture application from hyperspectral data is significantly affected by data compression. This analysis was carried out using the hyperspectral data sets acquired by Compact Airborne Spectrographic Imager (CASI) over corn fields at L'Acadie experimental farm (Agriculture and Agri-Food Canada) during the summer of 2000 and over corn, soybean and wheat fields at the former Greenbelt farm (Agriculture and Agri-Food Canada) in three intensive field campaigns during the summer of 2001. Leaf chlorophyll content and LAI were retrieved from the original data and the reconstructed data compressed/decompressed by the compression algorithm called Successive approximation multi-stage vector quantization (SAMVQ) at compression ratios of 20:1, 30:1, and 50:1. The retrieved products were evaluated against the ground-truth.In the retrieval of leaf chlorophyll content (the first data set), the spatial patterns were examined in all of the images created from the original and reconstructed data and were proven to be visually unchanged, as expected. The data measures R2, absolute RMSE, and relative RMSE between the leaf chlorophyll content derived from the original and reconstructed data cubes, and the laboratory-measured values were calculated as well. The results show the retrieval accuracy of crop chlorophyll content is not significantly affected by SAMVQ at the compression ratios of 20:1, 30:1, and 50:1, relative to the observed uncertainties in ground truth values. In the retrieval of LAI (the second data set), qualitative and quantitative analyses were performed. The results show that the spatial and temporal patterns of the LAI images are not significantly affected by SAMVQ and the retrieval accuracies measured by the R2, absolute RMSE, and relative RMSE between the ground-measured LAI and the estimated LAI are not significantly affected by the data compression either.  相似文献   

8.
植被含水量是影响和评价植被生长状态的重要因素之一。因此,针对高光谱数据具有目标诊断性特征精细反演的特点,较为精准地提取了植被的光谱诊断性特征,在包络线去除法的基础上,提出了基于双倒高斯模型的光谱吸收峰特征参数提取方法。首先,根据植被光谱吸收峰特征建立了双倒高斯模型,其次,为了验证模型的正确性和有效性,利用地面试验数据及真实的Hyperion高光谱遥感数据对模型进行了验证。结果表明:通过模型提取的光谱特征参数:吸收峰深度、对称度与植被含水量呈线性相关,决定系数R2分别为0.86和0.76,RMSE为0.797和1.112。实验结果在证实了模型有效性的同时验证了高光谱数据对于植被含水量反演的可行性。  相似文献   

9.
Quantitative estimation of vegetation water content(VWC) using optical remote sensing techniques is helpful in forest fire as-sessment,agricultural drought monitoring and crop yield estimation.This paper reviews the research advances of VWC retrieval using spectral reflectance,spectral water index and radiative transfer model(RTM) methods.It also evaluates the reli-ability of VWC estimation using spectral water index from the observation data and the RTM.Focusing on two main definitions of VWC—the fuel mois...  相似文献   

10.
This work extends the previous study of Trishchenko et al. [Trishchenko, A. P., Cihlar, J., & Li, Z. (2002). Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sensing of Environment 81 (1), 1-18] that analyzed the spectral response function (SRF) effect for the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA satellites NOAA-6 to NOAA-16 as well as the Moderate Resolution Imaging Spectroradiometer (MODIS), the VEGETATION sensor (VGT) and the Global Imager (GLI). The developed approach is now applied to cover three new AVHRR sensors launched in recent years on NOAA-17, 18, and METOP-A platforms. As in the previous study, the results are provided relative to the reference sensor AVHRR NOAA-9. The differences in reflectance among these three radiometers relative to the AVHRR NOAA-9 are similar to each other and range from − 0.015 to 0.015 (− 20% to + 2% relative) for visible (red) channel, and from − 0.03 to 0.02 (− 5% to 5%) for the near infrared (NIR) channel. The absolute change in the Normalized Difference Vegetation Index (NDVI) ranged from − 0.03 to + 0.06. Due to systematic biases of the visible channels toward smaller values and the NIR channels toward slightly larger values, the overall systematic biases for NDVI are positive. The polynomial approximations are provided for the bulk spectral correction with respect to the AVHRR NOAA-9 for consistency with previous study. Analysis was also conducted for the SRF effect only among the AVHRR-3 type of radiometer on NOAA-15, 16, 17, 18 and METOP-A using AVHRR NOAA-18 as a reference. The results show more consistency between sensors with typical correction being under 5% (or 0.01 in absolute values). The AVHRR METOP-A reveals the most different behavior among the AVHRR-3 group with generally positive bias for visible channel (up to + 5%, relative), slightly negative bias for the NIR channel (1%-2% relative), and negative NDVI bias (− 0.02 to + 0.005). Polynomial corrections are also suggested for normalization of AVHRR on NOAA-15, 16, 17 and METOP-A to AVHRR NOAA-18.  相似文献   

11.
基于Sentinel-1及 Landsat 8数据的黑河中游农田土壤水分估算   总被引:1,自引:0,他引:1  
土壤水分是陆地表层系统中的关键变量。利用主动微波遥感,特别是合成孔径雷达(Synthetic Aperture Radar,SAR)的观测,在监测和估计表层土壤水分时空分布方面已开展了诸多研究。然而,SAR土壤水分反演仍存在诸多挑战,特别是地表粗糙度和植被的影响。因此,本文提出了一种结合主动微波和光学遥感的优化估计方案,旨在同步反演植被含水量、地表粗糙度和土壤水分。反演算法首先在水云模型的框架下对模型中的植被透过率因子(与植被含水量密切相关)采用3种不同的光学遥感指数——修正的土壤调节植被指数(Modified Soil Adjusted Vegetation Index,MSAVI)、归一化植被指数(Normalized Difference Vegetation Index,NDVI)和归一化水体指数(Normalized Difference Water Index,NDWI)进行参数化估计,用于校正植被层的散射贡献。在此基础上,构造基于SAR观测和Oh模型的代价函数,利用复型洗牌全局优化算法进行土壤水分和地表粗糙度的联合反演。采用Sentinel-1 SAR和Landsat 8多光谱数据在黑河中游开展了反演试验,并利用相应的地面观测数据对结果进行了验证。结果表明反演结果与地面观测具有良好的一致性,其中基于NDWI的植被含水量反演效果最佳,与地面观测比较,土壤水分决定系数(R 2)在0.7以上,均方根误差(RMSE)为0.073 m^ 3/m^ 3;植被含水量R 2大于0.9,RMSE为0.885 kg/m 2,表明该方法能够较准确地估计土壤水分。同时发现植被含水量的估计结果,以及植被透过率的参数化方案对土壤水分的反演精度有一定的影响,在未来的研究中需要进一步探索。  相似文献   

12.
从第三十五届国际宇航联合会的空同遥感专业小组会议上可以看出,目前空间遥感的现状及未来发展前景。今后空间遥感将从具有单一遥感能力向具有综合遥感能力方面发展,不仅能对陆地,而且对海  相似文献   

13.
Estimation of photosynthetic light use efficiency (ε) from satellite observations is an important component of climate change research. The photochemical reflectance index, a narrow waveband index based on the reflectance at 531 and 570 nm, allows sampling of the photosynthetic activity of leaves; upscaling of these measurements to landscape and global scales, however, remains challenging. Only a few studies have used spaceborne observations of PRI so far, and research has largely focused on the MODIS sensor. Its daily global coverage and the capacity to detect a narrow reflectance band at 531 nm make it the best available choice for sensing ε from space. Previous results however, have identified a number of key issues with MODIS-based observations of PRI. First, the differences between the footprint of eddy covariance (EC) measurements and the MODIS footprint, which is determined by the sensor's observation geometry make a direct comparison between both data sources challenging and second, the PRI reflectance bands are affected by atmospheric scattering effects confounding the existing physiological signal. In this study we introduce a new approach for upscaling EC based ε measurements to MODIS. First, EC-measured ε values were “translated” into a tower-level optical PRI signal using AMSPEC, an automated multi-angular, tower-based spectroradiometer instrument. AMSPEC enabled us to adjust tower-measured PRI values to the individual viewing geometry of each MODIS overpass. Second, MODIS data were atmospherically corrected using a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which uses a time series approach and an image-based rather than pixel-based processing for simultaneous retrievals of atmospheric aerosol and surface bidirectional reflectance (BRDF). Using this approach, we found a strong relationship between tower-based and spaceborne reflectance measurements (r2 = 0.74, p < 0.01) throughout the vegetation period of 2006. Swath (non-gridded) observations yielded stronger correlations than gridded data (r2 = 0.58, p < 0.01) both of which included forward and backscatter observations. Spaceborne PRI values were strongly related to canopy shadow fractions and varied with different levels of ε. We conclude that MAIAC-corrected MODIS observations were able to track the site-level physiological changes from space throughout the observation period.  相似文献   

14.
Two remote sensing systems, which are considered to be operated in space, the Infrared Atmospheric Sounding Interferometer (IASI) and the Water Vapour Lidar Experiment in Space (WALES) are compared with respect to their measurement methodologies and their performance. The focus is the retrieval of water vapor, which is determined by the inversion of the radiative transfer equation in case of IASI and by the differential absorption lidar (DIAL) technique in case of WALES. It is realized that different techniques and definitions for the specification of errors exist which are subject of confusion in the remote sensing community. After a clarification of this issue, a comparison of IASI and WALES water vapor retrievals is performed using the same water vapor climatologies and the same 2-d water vapor fields provided by a global numerical weather prediction (NWP) model.The methodologies and the capabilities of each instrument are compared in regions without clouds. Using end-to-end simulations for both instruments, which are to our knowledge performed for the first time, systematic errors are compared up to 16 km. It is found that the dependence of IASI retrievals on a variety of atmospheric parameters leads to compensating effects. Due to the multiwavelength retrieval, errors in the water vapor spectroscopy can partly cancel. The residual error is quantified by inversion of the radiative transfer equation in dependence of several atmospheric variables. In contrast, errors in water vapor DIAL are very sensitive to laser spectral properties as well as to the accuracy of water vapor spectroscopy, as single water vapor absorption lines are used for each vertical segment of the retrieval. As laser transmitters with excellent spectral specifications are feasible, this can still lead to very low systematic errors under all atmospheric conditions.Noise errors are determined using analytical models and are compared up to 16 km. At the same vertical (1-2 km) and horizontal (100-200 km) resolutions, respectively, the average noise errors in each profile are of the order of 10% for both methods. Depending on the climatology, the vertical range of IASI measurements is always several kilometers lower than that of DIAL. The performance of IASI degrades in dry atmospheres whereas the DIAL performance remains nearly independent of the climatology chosen. Bias errors show a similar behavior. Neglecting bias errors in the spectral measurements, from mid-latitudes to the tropics, IASI biases are <2 % in the vertical range where the noise errors remain <20%. In the sub-arctic winter atmosphere, the bias increases to about −4% close to the ground. Space borne DIAL bias profiles range between −2-1% under all conditions plus an additional height independent bias of about ±2 due to remaining uncertainties in absorption line spectroscopy.Operation in the region of clouds are not a focus of this publication but it is worth to mention that the results demonstrate that space borne DIAL can perform measurements down to cloud tops and often through optically thin clouds. Particularly powerful is the synergistic combinations of both sensors in the future. Iteration between IASI temperature and DIAL water vapor retrievals will increase both accuracies.  相似文献   

15.
Land surface temperature (LST) is a key parameter in numerous environmental studies. Surface heterogeneity induces uncertainty in estimating subpixel temperature. To take an advantage of simultaneous, multi-resolution observations at coincident nadirs by the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) and the MODerate-resolution Imaging Spectroradiometer (MODIS), LST products from the two sensors were examined for a portion of suburb area in Beijing, China. We selected Soil-Adjusted Vegetation Index (SAVI), Normalized Multi-band Drought Index (NMDI), Normalized Difference Built-up Index (NDBI) and Normalized Difference Water Index (NDWI) as representative remote sensing indices for four land cover types (vegetation, bare soil, impervious and water area), respectively. By using support vector machines, the overall classification accuracy of the four land cover types with inputs of the four remote sensing indices, extracted from ASTER visible near infrared (VNIR) bands and shortwave infrared (SWIR) bands, reached 97.66%, and Kappa coefficient was 0.9632. In order to lower the subpixel temperature estimation error caused by re-sampling of remote sensing data, a disaggregation method for subpixel temperature using the remote sensing endmember index based technique (DisEMI) was established in this study. Firstly, the area ratios and statistical information of endmember remote sensing indices were calculated from ASTER VNIR/SWIR data at 990 m and 90 m resolutions, respectively. Secondly, the relationship between the 990 m resolution MODIS LST and the corresponding input parameters (area ratios and endmember indices at the 990 m resolution) was trained by a genetic algorithm and self-organizing feature map artificial neural network (GA-SOFM-ANN). Finally, the trained models were employed to estimate the 90 m resolution subpixel temperature with inputs of area ratios and endmember indices at the 90 m resolution. ASTER LST product was used for verifying the estimated subpixel temperature, and the verified results indicate that the estimated temperature distribution was basically consistent with that of ASTER LST product. A better agreement was found between temperatures derived by our proposed method (DisEMI) and the ASTER 90 m data (R2 = 0.709 and RMSE = 2.702 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号