首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Comparing MODIS and ETM+ data for regional and global land classification   总被引:2,自引:0,他引:2  
Nearly simultaneous reflectance data sets from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+), at 30-m resolution, and the Terra satellite instrument MODIS, at 500-m resolution, are compared for their ability to map fractional coverage of surface types over large areas. Lower spatial resolution MODIS classification results are generally comparable those of ETM+, with discrepancies for some regions with mixed surface types. Analysis of laboratory and field spectra suggests an ambiguity, the “brightness ambiguity”, which can prevent accurate area estimation of pixels having two or more surface types. This ambiguity, plus general mathematical inversion issues, can account for the discrepancy. Thus, occasional high-resolution measurements, as from Landsat 7, are necessary to refine estimations of large area surface types from MODIS and similar lower spatial resolution instruments.  相似文献   

2.
Canopy leaf area index (LAI), defined as the single-sided leaf area per unit ground area, is a quantitative measure of canopy foliar area. LAI is a controlling biophysical property of vegetation function, and quantifying LAI is thus vital for understanding energy, carbon and water fluxes between the land surface and the atmosphere. LAI is routinely available from Earth Observation (EO) instruments such as MODIS. However EO-derived estimates of LAI require validation before they are utilised by the ecosystem modelling community. Previous validation work on the MODIS collection 4 (c4) product suggested considerable error especially in forested biomes, and as a result significant modification of the MODIS LAI algorithm has been made for the most recent collection 5 (c5). As a result of these changes the current MODIS LAI product has not been widely validated. We present a validation of the MODIS c5 LAI product over a 121 km2 area of mixed coniferous forest in Oregon, USA, based on detailed ground measurements which we have upscaled using high resolution EO data. Our analysis suggests that c5 shows a much more realistic temporal LAI dynamic over c4 values for the site we examined. We find improved spatial consistency between the MODIS c5 LAI product and upscaled in situ measurements. However results also suggest that the c5 LAI product underestimates the upper range of upscaled in situ LAI measurements.  相似文献   

3.
The leaf area index (LAI) product from the Moderate Resolution Imaging Spectroradiometer (MODIS) is important for monitoring and modelling global change and terrestrial dynamics at many scales. The algorithm relies on spectral reflectances and a six biome land cover classification. Evaluation of the specific behaviour and performance of the product for regions of the globe such as Australia are needed to assist with product refinement and validation. We made an assessment of Collection 4 of the MODIS LAI product using four approaches: (a) assessment against a continental scale Structural Classification of Australian Vegetation (SCAV); (b) assessment against a continental scale land use classification (LUC); (c) assessment against historical field-based measurement of LAI collected prior to the Terra Mission; and (d) direct comparison of MODIS LAI with coincident field measurements of LAI, mostly from hemispherical photography. The MODIS LAI product produced a wide variety of geographically and structurally specific temporal response profiles between different classes and even for sub-groups within classes of the SCAV. Historical and concurrent field measurements indicated that MODIS LAI was giving reasonable estimates for LAI for most cover types and land use types, but that major overestimation of LAI occurs in some eastern Australian open forests and woodlands. The six biome structural land cover classification showed some significant deviations in class allocation compared to the SCAV particularly where grasslands are allocated to shrubland, savanna woodlands are allocated to shrubland, savanna and broadleaf forest, and open forests are allocated to savanna and broadleaf forest. The land cover and LAI products could benefit from some additional examination of Australian data addressing the structural representation of Eucalypt canopies in the “space of canopy realisation” for savanna and broadleaf forest classes.  相似文献   

4.
Information on land cover at global and continental scales is critical for addressing a range of ecological, socioeconomic and policy questions. Global land cover maps have evolved rapidly in the last decade, but efforts to evaluate map uncertainties have been limited, especially in remote areas like Northern Eurasia. Northern Eurasia comprises a particularly diverse region covering a wide range of climate zones and ecosystems: from arctic deserts, tundra, boreal forest, and wetlands, to semi-arid steppes and the deserts of Central Asia. In this study, we assessed four of the most recent global land cover datasets: GLC-2000, GLOBCOVER, and the MODIS Collection 4 and Collection 5 Land Cover Product using cross-comparison analyses and Landsat-based reference maps distributed throughout the region. A consistent comparison of these maps was challenging because of disparities in class definitions, thematic detail, and spatial resolution. We found that the choice of sampling unit significantly influenced accuracy estimates, which indicates that comparisons of reported global map accuracies might be misleading. To minimize classification ambiguities, we devised a generalized legend based on dominant life form types (LFT) (tree, shrub, and herbaceous vegetation, barren land and water). LFT served as a necessary common denominator in the analyzed map legends, but significantly decreased the thematic detail. We found significant differences in the spatial representation of LFT's between global maps with high spatial agreement (above 0.8) concentrated in the forest belt of Northern Eurasia and low agreement (below 0.5) concentrated in the northern taiga-tundra zone, and the southern dry lands. Total pixel-level agreement between global maps and six test sites was moderate to fair (overall agreement: 0.67-0.74, Kappa: 0.41-0.52) and increased by 0.09-0.45 when only homogenous land cover types were analyzed. Low map accuracies at our tundra test site confirmed regional disagreements and difficulties of current global maps in accurately mapping shrub and herbaceous vegetation types at the biome borders of Northern Eurasia. In comparison, tree dominated vegetation classes in the forest belt of the region were accurately mapped, but were slightly overestimated (10%-20%), in all maps. Low agreement of global maps in the northern and southern vegetation transition zones of Northern Eurasia is likely to have important implications for global change research, as those areas are vulnerable to both climate and socio-economic changes.  相似文献   

5.
Leaf area index (LAI) is an important variable needed by various land surface process models. It has been produced operationally from the Moderate Resolution Imaging Spectroradiometer (MODIS) data using a look-up table (LUT) method, but the inversion accuracy still needs significant improvements. We propose an alternative method in this study that integrates both the radiative transfer (RT) simulation and nonparametric regression methods. Two nonparametric regression methods (i.e., the neural network [NN] and the projection pursuit regression [PPR]) were examined. An integrated database was constructed from radiative transfer simulations tuned for two broad biome categories (broadleaf and needleleaf vegetations). A new soil reflectance index (SRI) and analytically simulated leaf optical properties were used in the parameterization process. This algorithm was tested in two sites, one at Maryland, USA, a middle latitude temperate agricultural area, and the other at Canada, a boreal forest site, and LAI was accurately estimated. The derived LAI maps were also compared with those from MODIS science team and ETM+ data. The MODIS standard LAI products were found consistent with our results for broadleaf crops, needleleaf forest, and other cover types, but overestimated broadleaf forest by 2.0-3.0 due to the complex biome types.  相似文献   

6.
A prototype product suite, containing the Terra 8-day, Aqua 8-day, Terra-Aqua combined 8- and 4-day products, was generated as part of testing for the next version (Collection 5) of the MODerate resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) products. These products were analyzed for consistency between Terra and Aqua retrievals over the following data subsets in North America: single 8-day composite over the whole continent and annual time series over three selected MODIS tiles (1200 × 1200 km). The potential for combining retrievals from the two sensors to derive improved products by reducing the impact of environmental conditions and temporal compositing period was also explored. The results suggest no significant discrepancies between large area (from continent to MODIS tile) averages of the Terra and Aqua 8-day LAI and surface reflectances products. The differences over smaller regions, however, can be large due to the random nature of residual atmospheric effects. High quality retrievals from the radiative transfer based algorithm can be expected in 90-95% of the pixels with mostly herbaceous cover and about 50-75% of the pixels with woody vegetation during the growing season. The quality of retrievals during the growing season is mostly restricted by aerosol contamination of the MODIS data. The Terra-Aqua combined 8-day product helps to minimize this effect and increases the number of high quality retrievals by 10-20% over woody vegetation. The combined 8-day product does not improve the number of high quality retrievals during the winter period because the extent of snow contamination of Terra and Aqua observations is similar. Likewise, cloud contamination in the single-sensor and combined products is also similar. The LAI magnitudes, seasonal profiles and retrieval quality in the combined 4-day product are comparable to those in the single-sensor 8-day products. Thus, the combined 4-day product doubles the temporal resolution of the seasonal cycle, which facilitates phenology monitoring in application studies during vegetation transition periods. Both Terra and Aqua LAI products show anomalous seasonality in boreal needle leaf forests, due to limitations of the radiative transfer algorithm to model seasonal variations of MODIS surface reflectance data with respect to solar zenith angle. Finally, this study suggests that further improvement of the MODIS LAI products is mainly restricted by the accuracy of the MODIS observations.  相似文献   

7.
This paper evaluates the performances of a neural network approach to estimate LAI from CYCLOPES and MODIS nadir normalized reflectance and LAI products. A data base was generated from these products over the BELMANIP sites during the 2001-2003 period. Data were aggregated at 3 km × 3 km, resampled at 1/16 days temporal frequency and filtered to reject outliers. VEGETATION and MODIS reflectances show very consistent values in the red, near infrared and short wave infrared bands. Neural networks were trained over part of this data base for each of the 6 MODIS biome classes to retrieve both MODIS and CYCLOPES LAI products.Results show very good performances of neural networks to estimate the original LAI products with an overall root mean square error (RMSE) around 0.5 for MODIS LAI from both MODIS and CYCLOPES normalized reflectances and a RMSE ranging between 0.12 (CYCLOPES reflectances) and 0.29 (MODIS reflectances) for CYCLOPES LAI. A drop of 15% of performance was found by training MODIS biome dependant algorithm by a single network over all the classes at the same time. More detailed analyses show that CYCLOPES and MODIS LAI values are very consistent for grasses and crops. Conversely, other biomes including shrubs, savanna, needleleaf and broadleaf forests show significant discrepancies, mainly due to differences between LAI definitions used between CYCLOPES (closer to effective LAI) and MODIS (closer to true LAI). However, products derived from the original CYCLOPES LAI products show a better agreement with both effective and true LAI ground measurements values. MODIS LAI products show more instability, partly because of the slightly shorter temporal resolution as compared to CYCLOPES.These results confirm the interest and versatility of neural networks for operational algorithms. This approach could be extended to other products or sensors, and may constitute a step forward for the fusion of data from several sensors, hence contributing to develop ‘virtual constellations’.  相似文献   

8.
An algorithm for burned area mapping in Africa based on classification trees was developed using SPOT-VEGETATION (VGT) imagery. The derived 1 km spatial resolution burned area maps were compared with 30 m spatial resolution maps obtained with 13 Landsat ETM+ scenes, through linear regression analysis. The procedure quantifies the bias in burned area estimation present in the low spatial resolution burned area map. Good correspondence was observed for seven sites, with values of the coefficient of determination (R2) ranging from 0.787 to 0.983. Poorer agreement was observed in four sites (R2 values between 0.257 and 0.417), and intermediate values of R2 (0.670 and 0.613) were obtained for two sites. The observed variation in the level of agreement between the Landsat and VGT estimates of area burned results from differences in the spatial pattern and size distribution of burns in the different fire regimes encompassed by our analysis. Small and fragmented burned areas result in large underestimation at 1 km spatial resolution. When large and compact burned areas dominate the landscape, VGT estimates of burned area are accurate, although in certain situations there is some overestimation. Accuracy of VGT burned area estimates also depends on vegetation type. Results showed that in forest ecosystems VGT maps underestimate substantially the amount of burned area. The most accurate estimates were obtained for woodlands and grasslands. An overall linear regression fitted with the data from the 13 comparison sites revealed that there is a strong relationship between VGT and Landsat estimates of burned area, with a value of R2 of 0.754 and a slope of 0.803. Our findings indicate that burned area mapping based on 1 km spatial resolution VGT data provides adequate regional information.  相似文献   

9.
Structural and functional analyses of ecosystems benefit when high accuracy vegetation coverages can be derived over large areas. In this study, we utilize IKONOS, Landsat 7 ETM+, and airborne scanning light detection and ranging (lidar) to quantify coniferous forest and understory grass coverages in a ponderosa pine (Pinus ponderosa) dominated ecosystem in the Black Hills of South Dakota. Linear spectral mixture analyses of IKONOS and ETM+ data were used to isolate spectral endmembers (bare soil, understory grass, and tree/shade) and calculate their subpixel fractional coverages. We then compared these endmember cover estimates to similar cover estimates derived from lidar data and field measures. The IKONOS-derived tree/shade fraction was significantly correlated with the field-measured canopy effective leaf area index (LAIe) (r2=0.55, p<0.001) and with the lidar-derived estimate of tree occurrence (r2=0.79, p<0.001). The enhanced vegetation index (EVI) calculated from IKONOS imagery showed a negative correlation with the field measured tree canopy effective LAI and lidar tree cover response (r2=0.30, r=−0.55 and r2=0.41, r=−0.64, respectively; p<0.001) and further analyses indicate a strong linear relationship between EVI and the IKONOS-derived grass fraction (r2=0.99, p<0.001). We also found that using EVI resulted in better agreement with the subpixel vegetation fractions in this ecosystem than using normalized difference of vegetation index (NDVI). Coarsening the IKONOS data to 30 m resolution imagery revealed a stronger relationship with lidar tree measures (r2=0.77, p<0.001) than at 4 m resolution (r2=0.58, p<0.001). Unmixed tree/shade fractions derived from 30 m resolution ETM+ imagery also showed a significant correlation with the lidar data (r2=0.66, p<0.001). These results demonstrate the power of using high resolution lidar data to validate spectral unmixing results of satellite imagery, and indicate that IKONOS data and Landsat 7 ETM+ data both can serve to make the important distinction between tree/shade coverage and exposed understory grass coverage during peak summertime greenness in a ponderosa pine forest ecosystem.  相似文献   

10.
An experimental site was set up in a large, flat and homogeneous area of rice crops for the validation of satellite derived land surface temperature (LST). Experimental campaigns were held in the summers of 2002-2004, when rice crops show full vegetation cover. LSTs were measured radiometrically along transects covering an area of 1 km2. A total number of four thermal radiometers were used, which were calibrated and inter-compared through the campaigns. Radiometric temperatures were corrected for emissivity effects using field emissivity and downwelling sky radiance measurements. A database of ground-based LSTs corresponding to morning, cloud-free overpasses of Envisat/Advanced Along-Track Scanning Radiometer (AATSR) and Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. Ground LSTs ranged from 25 to 32 °C, with uncertainties between ± 0.5 and ± 0.9 °C. The largest part of these uncertainties was due to the spatial variability of surface temperature. The database was used for the validation of LSTs derived from the operational AATSR and MODIS split-window algorithms, which are currently used to generate the LST product in the L2 level data. A quadratic, emissivity dependent split-window equation applicable to both AATSR and MODIS data was checked as well. Although the number of cases analyzed is limited (five concurrences for AATSR and eleven for MODIS), it can be concluded that the split-window algorithms work well, provided that the characteristics of the area are adequately prescribed, either through the classification of the land cover type and the vegetation cover, or with the surface emissivity. In this case, the AATSR LSTs yielded an average error or bias of − 0.9 °C (ground minus algorithm), with a standard deviation of 0.9 °C. The MODIS LST product agreed well with the ground LSTs, with differences comparable or smaller than the uncertainties of the ground measurements for most of the days (bias of + 0.1 °C and standard deviation of 0.6 °C, for cloud-free cases and viewing angles smaller than 60°). The quadratic split-window algorithm resulted in small average errors (+ 0.3 °C for AATSR and 0.0 °C for MODIS), with differences not exceeding ± 1.0 °C for most of the days (standard deviation of 0.9 °C for AATSR and 0.5 °C for MODIS).  相似文献   

11.
The overarching goal of this study was to map irrigated areas in the Ganges and Indus river basins using near-continuous time-series (8-day), 500-m resolution, 7-band MODIS land data for 2001-2002. A multitemporal analysis was conducted, based on a mega file of 294 wavebands, made from 42 MODIS images each of 7 bands. Complementary field data were gathered from 196 locations. The study began with the development of two cloud removal algorithms (CRAs) for MODIS 7-band reflectivity data, named: (a) blue-band minimum reflectivity threshold and (b) visible-band minimum reflectivity threshold.A series of innovative methods and approaches were introduced to analyze time-series MODIS data and consisted of: (a) brightness-greenness-wetness (BGW) RED-NIR 2-dimensional feature space (2-d FS) plots for each of the 42 dates, (b) end-member (spectral angle) analysis using RED-NIR single date (RN-SD) plots, (c) combining several RN-SDs in a single plot to develop RED-NIR multidate (RN-MDs) plots in order to help track changes in magnitude and direction of spectral classes in 2-d FS, (d) introduction of a unique concept of space-time spiral curves (ST-SCs) to continuously track class dynamics over time and space and to determine class separability at various time periods within and across seasons, and (e) to establish unique class signatures based on NDVI (CS-NDVI) and/or multiband reflectivity (CS-MBR), for each class, and demonstrate their intra- and inter-seasonal and intra- and inter-year characteristics. The results from these techniques and methods enabled us to gather precise information on onset-peak-senescence-duration of each irrigated and rainfed classes.The resulting 29 land use/land cover (LULC) map consisted of 6 unique irrigated area classes in the total study area of 133,021,156 ha within the Ganges and Indus basins. Of this, the net irrigated area was estimated as 33.08 million hectares—26.6% by canals and 73.4z5 by groundwater. Of the 33.08 Mha, 98.4% of the area was irrigated during khariff (Southwest monsoonal rainy season during June-October), 92.5% irrigated during Rabi (Northeast monsoonal rainy season during November-February), and only 3.5% continuously through the year.Quantitative Fuzzy Classification Accuracy Assessment (QFCAA) showed that the accuracies of the 29 classes varied from 56% to 100%—with 17 classes above 80% accurate and 23 classes above 70% accurate.The MODIS band 5 centered at 1240 nm provided the best separability in mapping irrigated area classes, followed by bands 2 (centered at 859 nm), 7 (2130 nm) and 6 (1640 nm).  相似文献   

12.
Leaf Area Index (LAI) is an important biophysical variable for characterizing the land surface vegetation. Global LAI product has been routinely produced from the MODerate resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellite platforms. However, the MODIS standard LAI product is not continuous both spatially and temporally. To fill the gaps and improve the quality, we have developed a data filtering algorithm. This filter, called the temporal spatial filter (TSF), integrates both spatial and temporal characteristics for different plant functional types. The spatial gaps are first filled with the multi-year averages of the same day. If the values are missing over all years, the pixel is filled with a new estimate using the vegetation continuous field-ecosystem curve fitting method. The TSF integrates both the multi-seasonal average trend (background) and the seasonal observation. We implement this algorithm using the MODIS Collection 4 LAI product over North America. Comparison of the TSF results with the Savitzky-Golay filter indicates that the TSF performs much better in restoring the spatial and temporal distribution of seasonal LAI trends. The new LAI product has been validated by comparing with field measurements and the derived LAI maps from ETM+ data at a broadleaf forest site and an agricultural site. The validation results indicate that the new LAI product agrees better with both the field measurements and LAI values obtained from the ETM+ than does the MODIS LAI standard product, which usually shows higher LAI values.  相似文献   

13.
This paper discusses the accuracy of the operational Medium Resolution Imaging Spectrometer (MERIS) Level 2 land product which corresponds to the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR). The FAPAR value is estimated from daily MERIS spectral measurements acquired at the top-of-atmosphere, using a physically based approach. The products are operationally available at the reduced spatial resolution, i.e. 1.2 km, and can be computed at the full spatial resolution, i.e. at 300 m, from the top-of-atmosphere MERIS data by using the same algorithm. The quality assessment of the MERIS FAPAR products capitalizes on the availability of five years of data acquired globally. The actual validation exercise is performed in two steps including, first, an analysis of the accuracy of the FAPAR algorithm itself with respect to the spectral measurements uncertainties and, second, with a direct comparison of the FAPAR time series against ground-based estimations as well as similar FAPAR products derived from other optical sensor data. The results indicate that the impact of top-of-atmosphere radiance uncertainties on the operational MERIS FAPAR products accuracy is expected to be at about 5-10% and the agreement with the ground-based estimates over different canopy types is achieved within ± 0.1.  相似文献   

14.
The current outbreak of mountain pine beetle (Dendroctonus ponderosae Hopkins) in British Columbia (BC), Canada, has led forest managers to consider thinning as a means of decreasing residual tree susceptibility to attack and subsequent mortality. Previous research indicates that susceptibility to mountain pine beetle is a function of a tree's physiological vigor and the intensity of attack. Trees able to produce ≥ 80 g (g) of wood per m2 of projected leaf area annually are highly resistant, because they are able to shift resource allocation locally from wood to resin production to isolate blue-stain fungi introduced by attacking beetles. Typically, the leaf area of susceptible stands must be reduced by two-thirds to permit most residual trees to increase their vigor to a safe level. We evaluate whether Landsat Thematic Mapper (TM) imagery (30 × 30 m) provides a means to assess the maximum leaf area index (LAI) of unthinned stands and the extent that thinning reduces LAI. The extent that residual trees in thinned stands may have increased their resistance to attack from mountain pine beetle is predicted from a non-linear relationship between % maximum LAI and mean tree vigor.We investigated the merits of this approach in the vicinity of Parson, British Columbia using four stands of lodgepole pine (Pinus contorta Dougl.), two of which were heavily thinned (stands were spaced to 4 and 5 m, approximately 70% reduction in stand density). An analysis of archived Landsat TM imagery indicated that prior to thinning in 1993, all four stands had full canopy, which, for mature stands, would translate to mean tree vigor between 40 and 70 g of annual wood production per m2 of foliage. By 1995, based on estimated changes in LAI derived from a second data of Landsat TM imagery, stand vigor in the unthinned stands had not changed; however, in the thinned stands, a nearly two third reduction in LAI resulted in a predicted increase in vigor to between 100 and 160 g wood m− 2 of leaf area. A subsequent assessment in 2001 indicated that stand vigor remained higher in the thinned stands relative to the control stands. Following an infestation of mountain pine beetle in the study area in 2002, mortality data indicated that the thinned stands experienced no mortality relative to the unthinned stands which experienced 5.5% mortality in the initial years of the attack. In the larger area surrounding the study site, a general relationship was found between predicted stand vigor and mountain pine beetle-induced mortality as estimated from aerial overview survey data (r2 = 0.43, p < 0.01).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号