首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
研究了如何保护自由漫游的移动代理运行结果安全问题,总结了当前已有方案的特点和不足,指出了这些方案中存在的一个共同缺陷假设,即对于路由主机,同一移动代理只能经过其一次,不能多次访问。提出了一个抗截断攻击的保护移动代理运行结果方案,满足安全要求和抗弱截断攻击,去掉了当前方案的缺陷假设,增强了协议应用的灵活性。  相似文献   

2.
A humanoid robot is always flooded by sensed information when sensing the environment, and it usually needs significant time to compute and process the sensed information. In this paper, a selective attention-based contextual perception approach was proposed for humanoid robots to sense the environment with high efficiency. First, the connotation of attention window (AW) is extended to make a more general and abstract definition of AW, and its four kinds of operations and state transformations are also discussed. Second, the attention control policies are described, which integrate intensionguided perceptual objects selection and distractor inhibition, and can deal with emergent issues. Distractor inhibition is used to filter unrelated information. Last, attention policies are viewed as the robot’s perceptual modes, which can control and adjust the perception efficiency. The experimental results show that the presented approach can promote the perceptual efficiency significantly, and the perceptual cost can be effectively controlled through adopting different attention policies.  相似文献   

3.
基于嵌入式ARM和Linux系统设计了光纤温度传感检测电路。利用Linux内核进行嵌入式的驱动程序设计;通过捕捉多个外部中断实现反射谱峰值的间接定位;利用Multisim软件对光纤传感检测电路的外围硬件进行了性能仿真;基于QT设计了嵌入式系统的图形化界面。硬件电路运行结果表明,嵌入式系统的Linux内核可以正常引导和启动,QT图形化界面可以实时显示光纤反射谱峰值以及对应的温度值。和传统的工控开发板相比,该系统对测量结果的显示更加形象直观。  相似文献   

4.
In this paper, we study the problem of efficiently computing k-medians over high-dimensional and high speed data streams. The focus of this paper is on the issue of minimizing CPU time to handle high speed data streams on top of the requirements of high accuracy and small memory. Our work is motivated by the following observation: the existing algorithms have similar approximation behaviors in practice, even though they make noticeably different worst case theoretical guarantees. The underlying reason is that in order to achieve high approximation level with the smallest possible memory, they need rather complex techniques to maintain a sketch, along time dimension, by using some existing off-line clustering algorithms. Those clustering algorithms cannot guarantee the optimal clustering result over data segments in a data stream but accumulate errors over segments, which makes most algorithms behave the same in terms of approximation level, in practice. We propose a new grid-based approach which divides the entire data set into cells (not along time dimension). We can achieve high approximation level based on a novel concept called (1 - ε)-dominant. We further extend the method to the data stream context, by leveraging a density-based heuristic and frequent item mining techniques over data streams. We only need to apply an existing clustering once to computing k-medians, on demand, which reduces CPU time significantly. We conducted extensive experimental studies, and show that our approaches outperform other well-known approaches.  相似文献   

5.
This paper introduces a new algorithm of mining association rules.The algorithm RP counts the itemsets with different sizes in the same pass of scanning over the database by dividing the database into m partitions.The total number of pa sses over the database is only(k 2m-2)/m,where k is the longest size in the itemsets.It is much less than k .  相似文献   

6.
Tracking clusters in evolving data streams over sliding windows   总被引:6,自引:4,他引:2  
Mining data streams poses great challenges due to the limited memory availability and real-time query response requirement. Clustering an evolving data stream is especially interesting because it captures not only the changing distribution of clusters but also the evolving behaviors of individual clusters. In this paper, we present a novel method for tracking the evolution of clusters over sliding windows. In our SWClustering algorithm, we combine the exponential histogram with the temporal cluster features, propose a novel data structure, the Exponential Histogram of Cluster Features (EHCF). The exponential histogram is used to handle the in-cluster evolution, and the temporal cluster features represent the change of the cluster distribution. Our approach has several advantages over existing methods: (1) the quality of the clusters is improved because the EHCF captures the distribution of recent records precisely; (2) compared with previous methods, the mechanism employed to adaptively maintain the in-cluster synopsis can track the cluster evolution better, while consuming much less memory; (3) the EHCF provides a flexible framework for analyzing the cluster evolution and tracking a specific cluster efficiently without interfering with other clusters, thus reducing the consumption of computing resources for data stream clustering. Both the theoretical analysis and extensive experiments show the effectiveness and efficiency of the proposed method. Aoying Zhou is currently a Professor in Computer Science at Fudan University, Shanghai, P.R. China. He won his Bachelor and Master degrees in Computer Science from Sichuan University in Chengdu, Sichuan, P.R. China in 1985 and 1988, respectively, and Ph.D. degree from Fudan University in 1993. He served as the member or chair of program committee for many international conferences such as WWW, SIGMOD, VLDB, EDBT, ICDCS, ER, DASFAA, PAKDD, WAIM, and etc. His papers have been published in ACM SIGMOD, VLDB, ICDE, and several other international journals. His research interests include Data mining and knowledge discovery, XML data management, Web mining and searching, data stream analysis and processing, peer-to-peer computing. Feng Cao is currently an R&D engineer in IBM China Research Laboratories. He received a B.E. degree from Xi'an Jiao Tong University, Xi'an, P.R. China, in 2000 and an M.E. degree from Huazhong University of Science and Technology, Wuhan, P.R. China, in 2003. From October 2004 to March 2005, he worked in Fudan-NUS Competency Center for Peer-to-Peer Computing, Singapore. In 2006, he received his Ph.D. degree from Fudan University, Shanghai, P.R. China. His current research interests include data mining and data stream. Weining Qian is currently an Assistant Professor in computer science at Fudan University, Shanghai, P.R. China. He received his M.S. and Ph.D. degree in computer science from Fudan University in 2001 and 2004, respectively. He is supported by Shanghai Rising-Star Program under Grant No. 04QMX1404 and National Natural Science Foundation of China (NSFC) under Grant No. 60673134. He served as the program committee member of several international conferences, including DASFAA 2006, 2007 and 2008, APWeb/WAIM 2007, INFOSCALE 2007, and ECDM 2007. His papers have been published in ICDE, SIAM DM, and CIKM. His research interests include data stream query processing and mining, and large-scale distributed computing for database applications. Cheqing Jin is currently an Assistant Professor in Computer Science at East China University of Science and Technology. He received his Bachelor and Master degrees in Computer Science from Zhejiang University in Hangzhou, P.R. China in 1999 and 2002, respectively, and the Ph.D. degree from Fudan University, Shanghai, P.R. China. He worked as a Research Assistant at E-business Technology Institute, the Hong Kong University from December 2003 to May 2004. His current research interests include data mining and data stream.  相似文献   

7.
Since its introduction, frequent-pattern mining has been the subject of numerous studies, including incremental updating. Many existing incremental mining algorithms are Apriori-based, which are not easily adoptable to FP-tree-based frequent-pattern mining. In this paper, we propose a novel tree structure, called CanTree (canonical-order tree), that captures the content of the transaction database and orders tree nodes according to some canonical order. By exploiting its nice properties, the CanTree can be easily maintained when database transactions are inserted, deleted, and/or modified. For example, the CanTree does not require adjustment, merging, and/or splitting of tree nodes during maintenance. No rescan of the entire updated database or reconstruction of a new tree is needed for incremental updating. Experimental results show the effectiveness of our CanTree in the incremental mining of frequent patterns. Moreover, the applicability of CanTrees is not confined to incremental mining; CanTrees can also be applicable to other frequent-pattern mining tasks including constrained mining and interactive mining. Carson K.-S. Leung received his B.Sc.(Honours), M.Sc., and Ph.D. degrees, all in computer science, from the University of British Columbia, Canada. Currently, he is an Assistant Professor at the University of Manitoba, Canada. His research interests include the areas of databases, data mining, and data warehousing. His work has been published in refereed journals and conferences such as ACM Transactions on Database Systems (TODS), IEEE International Conference on Data Engineering (ICDE), and IEEE International Conference on Data Mining (ICDM) Quamrul I. Khan received his B.Sc. degree in computer science from North South University, Bangladesh, in 2001. He then worked as a Test Engineer and a Software Engineer for a few years before he started his current M.Sc. degree program in computer science at the University of Manitoba under the academic supervision of Dr. C. K.-S. Leung. Zhan Li received her B.Eng. degree in computer engineering from Harbin Engineering University, China, in 2002. Currently, she is pursuing her M.Sc. degree in computer science at the University of Manitoba under the academic supervision of Dr. C. K.-S. Leung. Tariqul Hoque received his B.Sc. degree in computer science from North South University, Bangladesh, in 2001. Currently, he is pursuing his M.Sc. degree in computer science at the University of Manitoba under the academic supervision of Dr. C. K.-S. Leung.  相似文献   

8.
ARMiner: A Data Mining Tool Based on Association Rules   总被引:3,自引:0,他引:3       下载免费PDF全文
In this paper,ARM iner,a data mining tool based on association rules,is introduced.Beginning with the system architecture,the characteristics and functions are discussed in details,including data transfer,concept hierarchy generalization,mining rules with negative items and the re-development of the system.An example of the tool‘s application is also shown.Finally,Some issues for future research are presented.  相似文献   

9.
Extensive studies have shown that mining microarray data sets is important in bioinformatics research and biomedical applications. In this paper, we explore a novel type of gene–sample–time microarray data sets that records the expression levels of various genes under a set of samples during a series of time points. In particular, we propose the mining of coherent gene clusters from such data sets. Each cluster contains a subset of genes and a subset of samples such that the genes are coherent on the samples along the time series. The coherent gene clusters may identify the samples corresponding to some phenotypes (e.g., diseases), and suggest the candidate genes correlated to the phenotypes. We present two efficient algorithms, namely the Sample-Gene Search and the GeneSample Search, to mine the complete set of coherent gene clusters. We empirically evaluate the performance of our approaches on both a real microarray data set and synthetic data sets. The test results have shown that our approaches are both efficient and effective to find meaningful coherent gene clusters. Daxin Jiang received the Ph.D. degree in computer science and engineering from the State University of New York at Buffalo in 2005. He received the B.S. degree in computer science from the University of Science and Technology of China. From 1998 to 2000, he was a M.S. student in Software Institute, Chinese Academy of Sciences. He is currently an assistant professor at the School of Computer Engineering, Nanyang Technology University, Singapore. His research interests include data mining, bioinformatics, machine learning, and information retrieval. Jian Pei received the Ph.D. degree in computing science from Simon Fraser University, Canada, in 2002, under Dr. Jiawei Han's supervision. He also received the B.Eng. and the M.Eng. degrees from Shanghai Jiao Tong University, China, in 1991 and 1993, respectively, both in Computer Science. He is currently an assistant professor of computing science at Simon Fraser University. His research interests include developing effective and efficient data analysis techniques for novel data intensive applications. He is currently interested in various techniques of data mining, data warehousing, online analytical processing, and database systems, as well as their applications in bioinformatics. His current research is supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the National Science Foundation (NSF) of the United States. Since 2000, he has published over 70 research papers in refereed journals, conferences, and workshops, has served in the organization committees and the program committees of over 60 international conferences and workshops, and has been a reviewer for some leading academic journals. He is a member of the ACM, the ACM SIGMOD, and the ACM SIGKDD. Murali Ramanathan is an associate professor of pharmaceutical sciences and neurology. He received the B.Tech. (Honors) in chemical engineering from the Indian Institute of Technology, India, in 1983. After a 4-year stint in the chemical industry, he obtained the M.S. degree in chemical engineering from Iowa State University, Ames, IA, in 1987, and the Ph.D. degree in bioengineering from the University of California-San Francisco and University of California-Berkeley Joint Program in Bioengineering in 1994. Dr. Ramanathan research interests are primarily focused on the treatment of multiple sclerosis (MS), an inflammatory-demyelinating disease of the central nervous system that affects over 1 million patients worldwide. MS is a complex, variable disease that causes physical and cognitive disability and nearly 50% of patients diagnosed with MS are unable to walk after 15 years. The etiology and pathogenesis of MS remains poorly understood. Dr. Ramanathan's research interests include stochastic modeling of pharmaceutical systems and novel approaches to analyzing and using genetic and genomic data for improving patient care and optimizing therapy. Chuan Lin is currently a Ph.D. student in the Department of Computer Science and Engineering, State University of New York at Buffalo. She received the B.E. and the M.S. degrees in computer science and technology from Tsinghua University in China. Her research interests include bioinformatics, data mining, and machine learning. Chun Tang received the B.S. and M.S. degrees from Peking University, China, in 1996 and 1999, respectively, and the Ph.D. degree from State University of New York at Buffalo, USA, in 2005, all in computer science. Currently, she is a postdoctoral associate of Center for Medical Informatics, Yale University. Her research interests include bioinformatics, data mining, machine learning, database, and information retrieval. Aidong Zhang received the Ph.D. degree in computer science from Purdue University, West Lafayette, Indiana, in 1994. She was an assistant professor from 1994 to 1999, an associate professor from 1999 to 2002, and has been a professor since 2002 in the Department of Computer Science and Engineering at State University of New York at Buffalo. Her research interests include multimedia systems, content-based image retrieval, bioinformatics, and data mining. She is an author of over 140 research publications in these areas. Dr. Zhang's research has been funded by NSF, NIH, NIMA, and Xerox. Zhang serves on the editorial boards of International Journal of Bioinformatics Research and Applications (IJBRA), ACM Multimedia Systems, International Journal of Multimedia Tools and Applications, and International Journal of Distributed and Parallel Databases. She was the editor for ACM SIGMOD DiSC (Digital Symposium Collection) from 2001 to 2003. She was co-chair of the technical program committee for ACM Multimedia in 2001. She has also served on various conference program committees. Dr. Zhang is a recipient of the National Science Foundation CAREER award and SUNY Chancellor's Research Recognition award.  相似文献   

10.
In multi-instance learning, the training set is composed of labeled bags each consists of many unlabeled instances, that is, an object is represented by a set of feature vectors instead of only one feature vector. Most current multi-instance learning algorithms work through adapting single-instance learning algorithms to the multi-instance representation, while this paper proposes a new solution which goes at an opposite way, that is, adapting the multi-instance representation to single-instance learning algorithms. In detail, the instances of all the bags are collected together and clustered into d groups first. Each bag is then re-represented by d binary features, where the value of the ith feature is set to one if the concerned bag has instances falling into the ith group and zero otherwise. Thus, each bag is represented by one feature vector so that single-instance classifiers can be used to distinguish different classes of bags. Through repeating the above process with different values of d, many classifiers can be generated and then they can be combined into an ensemble for prediction. Experiments show that the proposed method works well on standard as well as generalized multi-instance problems. Zhi-Hua Zhou is currently Professor in the Department of Computer Science & Technology and head of the LAMDA group at Nanjing University. His main research interests include machine learning, data mining, information retrieval, and pattern recognition. He is associate editor of Knowledge and Information Systems and on the editorial boards of Artificial Intelligence in Medicine, International Journal of Data Warehousing and Mining, Journal of Computer Science & Technology, and Journal of Software. He has also been involved in various conferences. Min-Ling Zhang received his B.Sc. and M.Sc. degrees in computer science from Nanjing University, China, in 2001 and 2004, respectively. Currently he is a Ph.D. candidate in the Department of Computer Science & Technology at Nanjing University and a member of the LAMDA group. His main research interests include machine learning and data mining, especially in multi-instance learning and multi-label learning.  相似文献   

11.
Mining frequent patterns from datasets is one of the key success of data mining research. Currently,most of the studies focus on the data sets in which the elements are independent, such as the items in the marketing basket. However, the objects in the real world often have close relationship with each other. How to extract frequent patterns from these relations is the objective of this paper. The authors use graphs to model the relations, and select a simple type for analysis. Combining the graph theory and algorithms to generate frequent patterns, a new algorithm called Topology, which can mine these graphs efficiently, has been proposed.The performance of the algorithm is evaluated by doing experiments with synthetic datasets and real data. The experimental results show that Topology can do the job well. At the end of this paper, the potential improvement is mentioned.  相似文献   

12.
Linear relation has been found to be valuable in rule discovery of stocks, such as if stock X goes up a, stock Y will go down b. The traditional linear regression models the linear relation of two sequences faithfully. However, if a user requires clustering of stocks into groups where sequences have high linearity or similarity with each other, it is prohibitively expensive to compare sequences one by one. In this paper, we present generalized regression model (GRM) to match the linearity of multiple sequences at a time. GRM also gives strong heuristic support for graceful and efficient clustering. The experiments on the stocks in the NASDAQ market mined interesting clusters of stock trends efficiently. Hansheng Lei received his BE from Ocean University of China in 1998, MS from the University of Science and Technology of China in 2001, and Ph.D. from the University at Buffalo, the State University of New York in February 2006, all in computer science. He is currently an assistant professor in CS/CIS Department, University of Texas at Brownsville. His research interests include biometrics, pattern recognition, machine learning, and data mining. Venu Govindaraju is a professor of Computer Science and Engineering at the University at Buffalo (UB), State University of New York. He received his B.-Tech. (Honors) from the Indian Institute of Technology (IIT), Kharagpur, India in 1986, and his Ph.D. degree in Computer Science from UB in 1992. His research is focused on pattern recognition applications in the areas of biometrics and digital libraries.  相似文献   

13.
In this paper, we propose an efficient scalable algorithm for mining Maximal Sequential Patterns using Sampling (MSPS). The MSPS algorithm reduces much more search space than other algorithms because both the subsequence infrequency-based pruning and the supersequence frequency-based pruning are applied. In MSPS, a sampling technique is used to identify long frequent sequences earlier, instead of enumerating all their subsequences. We propose how to adjust the user-specified minimum support level for mining a sample of the database to achieve better overall performance. This method makes sampling more efficient when the minimum support is small. A signature-based method and a hash-based method are developed for the subsequence infrequency-based pruning when the seed set of frequent sequences for the candidate generation is too big to be loaded into memory. A prefix tree structure is developed to count the candidate sequences of different sizes during the database scanning, and it also facilitates the customer sequence trimming. Our experiments showed MSPS has very good performance and better scalability than other algorithms. Congnan Luo received the B.E. degree in Computer Science from Tsinghua University, Beijing, P.R. China, in 1997, the M.S. degree in Computer Science from the Institute of Software, Chinese Academy of Sciences, Beijing, P.R. China, in 2000, and the Ph.D. degree in Computer Science and Engineering from Wright State University, Dayton, OH, in 2006. Currently he is a technical staff at the Teradata division of NCR in San Diego, CA, and his research interests include data mining, machine learning, and databases. Soon M. Chung received the B.S. degree in Electronic Engineering from Seoul National University, Korea, in 1979, the M.S. degree in Electrical Engineering from Korea Advanced Institute of Science and Technology, Korea, in 1981, and the Ph.D. degree in Computer Engineering from Syracuse University, Syracuse, New York, in 1990. He is currently a Professor in the Department of Computer Science and Engineering at Wright State University, Dayton, OH. His research interests include database, data mining, Grid computing, text mining, XML, and parallel and distributed processing.  相似文献   

14.
Fast and exact out-of-core and distributed k-means clustering   总被引:1,自引:2,他引:1  
Clustering has been one of the most widely studied topics in data mining and k-means clustering has been one of the popular clustering algorithms. K-means requires several passes on the entire dataset, which can make it very expensive for large disk-resident datasets. In view of this, a lot of work has been done on various approximate versions of k-means, which require only one or a small number of passes on the entire dataset.In this paper, we present a new algorithm, called fast and exact k-means clustering (FEKM), which typically requires only one or a small number of passes on the entire dataset and provably produces the same cluster centres as reported by the original k-means algorithm. The algorithm uses sampling to create initial cluster centres and then takes one or more passes over the entire dataset to adjust these cluster centres. We provide theoretical analysis to show that the cluster centres thus reported are the same as the ones computed by the original k-means algorithm. Experimental results from a number of real and synthetic datasets show speedup between a factor of 2 and 4.5, as compared with k-means.This paper also describes and evaluates a distributed version of FEKM, which we refer to as DFEKM. This algorithm is suitable for analysing data that is distributed across loosely coupled machines. Unlike the previous work in this area, DFEKM provably produces the same results as the original k-means algorithm. Our experimental results show that DFEKM is clearly better than two other possible options for exact clustering on distributed data, which are down loading all data and running sequential k-means or running parallel k-means on a loosely coupled configuration. Moreover, even in a tightly coupled environment, DFEKM can outperform parallel k-means if there is a significant load imbalance. Ruoming Jin is currently an assistant professor in the Computer Science Department at Kent State University. He received a BE and a ME degree in computer engineering from Beihang University (BUAA), China in 1996 and 1999, respectively. He earned his MS degree in computer science from University of Delaware in 2001, and his Ph.D. degree in computer science from the Ohio State University in 2005. His research interests include data mining, databases, processing of streaming data, bioinformatics, and high performance computing. He has published more than 30 papers in these areas. He is a member of ACM and SIGKDD. Anjan Goswami studied robotics at the Indian Institute of Technology at Kanpur. While working with IBM, he was interested in studying computer science. He then obtained a masters degree from the University of South Florida, where he worked on computer vision problems. He then transferred to the PhD program in computer science at OSU, where he did a Masters thesis on efficient clustering algorithms for massive, distributed and streaming data. On successful completion of this, he decided to join a web-service-provider company to do research in designing and developing high-performance search solutions for very large structured data. Anjan' favourite recreations are studying and predicting technology trends, nature photography, hiking, literature and soccer. Gagan Agrawal is an Associate Professor of Computer Science and Engineering at the Ohio State University. He received his B.Tech degree from Indian Institute of Technology, Kanpur, in 1991, and M.S. and Ph.D degrees from University of Maryland, College Park, in 1994 and 1996, respectively. His research interests include parallel and distributed computing, compilers, data mining, grid computing, and data integration. He has published more than 110 refereed papers in these areas. He is a member of ACM and IEEE Computer Society. He received a National Science Foundation CAREER award in 1998.  相似文献   

15.
Privacy-preserving is a major concern in the application of data mining techniques to datasets containing personal, sensitive, or confidential information. Data distortion is a critical component to preserve privacy in security-related data mining applications, such as in data mining-based terrorist analysis systems. We propose a sparsified Singular Value Decomposition (SVD) method for data distortion. We also put forth a few metrics to measure the difference between the distorted dataset and the original dataset and the degree of the privacy protection. Our experimental results using synthetic and real world datasets show that the sparsified SVD method works well in preserving privacy as well as maintaining utility of the datasets. Shuting Xu received her PhD in Computer Science from the University of Kentucky in 2005. Dr. Xu is presently an Assistant Professor in the Department of Computer Information Systems at the Virginia State University. Her research interests include data mining and information retrieval, database systems, parallel, and distributed computing. Jun Zhang received a PhD from The George Washington University in 1997. He is an Associate Professor of Computer Science and Director of the Laboratory for High Performance Scientific Computing & Computer Simulation and Laboratory for Computational Medical Imaging & Data Analysis at the University of Kentucky. His research interests include computational neuroinformatics, data miningand information retrieval, large scale parallel and scientific computing, numerical simulation, iterative and preconditioning techniques for large scale matrix computation. Dr. Zhang is associate editor and on the editorial boards of four international journals in computer simulation andcomputational mathematics, and is on the program committees of a few international conferences. His research work has been funded by the U.S. National Science Foundation and the Department of Energy. He is recipient of the U.S. National Science Foundation CAREER Award and several other awards. Dianwei Han received an M.E. degree from Beijing Institute of Technology, Beijing, China, in 1995. From 1995to 1998, he worked in a Hitachi company(BHH) in Beijing, China. He received an MS degree from Lamar University, USA, in 2003. He is currently a PhD student in the Department of Computer Science, University of Kentucky, USA. His research interests include data mining and information retrieval, computational medical imaging analysis, and artificial intelligence. Jie Wang received the masters degree in Industrial Automation from Beijing University of Chemical Technology in 1996. She is currently a PhD student and a member of the Laboratory for High Performance Computing and Computer Simulation in the Department of Computer Science at the University of Kentucky, USA. Her research interests include data mining and knowledge discovery, information filtering and retrieval, inter-organizational collaboration mechanism, and intelligent e-Technology.  相似文献   

16.
In this paper,a new effective method is proposed to find class association rules (CAR),to get useful class associaiton rules(UCAR)by removing the spurious class association rules (SCAR),and to generate exception class associaiton rules(ECAR)for each UCAR.CAR mining,which integrates the techniques of classification and association,is of great interest recently.However,it has two drawbacks:one is that a large part of CARs are spurious and maybe misleading to users ;the other is that some important ECARs are diffcult to find using traditional data mining techniques .The method introduced in this paper aims to get over these flaws.According to our approach,a user can retrieve correct information from UCARs and konw the influence from different conditions by checking corresponding ECARs.Experimental results demonstrate the effectiveness of our proposed approach.  相似文献   

17.
Constraining and summarizing association rules in medical data   总被引:4,自引:4,他引:0  
Association rules are a data mining technique used to discover frequent patterns in a data set. In this work, association rules are used in the medical domain, where data sets are generally high dimensional and small. The chief disadvantage about mining association rules in a high dimensional data set is the huge number of patterns that are discovered, most of which are irrelevant or redundant. Several constraints are proposed for filtering purposes, since our aim is to discover only significant association rules and accelerate the search process. A greedy algorithm is introduced to compute rule covers in order to summarize rules having the same consequent. The significance of association rules is evaluated using three metrics: support, confidence and lift. Experiments focus on discovering association rules on a real data set to predict absence or existence of heart disease. Constraints are shown to significantly reduce the number of discovered rules and improve running time. Rule covers summarize a large number of rules by producing a succinct set of rules with high-quality metrics. Carlos Ordonez received a degree in applied mathematics (actuarial sciences) and an MS degree in computer science, both from the UNAM University, Mexico, in 1992 and 1996, respectively. He got a PhD degree in computer science from the Georgia Institute of Technology, USA, in 2000. Dr. Ordonez currently works for Teradata (NCR) conducting research on database and data mining technology. He has published more than 20 research articles and holds three patents. Norberto Ezquerra obtained his undergraduate degree in mathematics and physics from the University of South Florida, and his doctoral degree from Florida State University, USA. He is an associate professor at the College of Computing at the Georgia Institute of Technology and an adjunct faculty member in the Emory University School of Medicine. His research interests include computer graphics, computer vision in medicine, AI in medicine, modeling of physically based systems, medical informatics and telemedicine. He is associate editor of the IEEE Transactions on Medical Imaging Journal, and a member of the American Medical Informatics Association and the IEEE Engineering in Medicine Biology Society. Cesar A. Santana received his MD degree in 1984 from the Institute of Medical Science, in Havana, Cuba. In 1988, he finished his residency training in internal medicine, and in 1991, completed a fellowship in nuclear medicine in Havana, Cuba. Dr. Santana received a PhD in nuclear cardiology in 1996 from the Department of Cardiology of the Vall d' Hebron University Hospital in Barcelona, Spain. Dr. Santana is an assistant professor at the Emory University School of Medicine and conducts research in the Radiology Department at the Emory University Hospital.  相似文献   

18.
1 IntroductionLet G = (V, E) be a connected, undirected graph with a weight function W on the set Eof edges to the set of reals. A spanning tree is a subgraph T = (V, ET), ET G E, of C suchthat T is a tree. The weight W(T) of a spanning tree T is the sum of the weights of its edges.A spanning tree with the smallest possible'weight is called a minimum spanning tree (MST)of G. Computing an MST of a given weighted graph is an important problem that arisesin many applications. For this …  相似文献   

19.
Constrained frequent patterns and closed frequent patterns are two paradigms aimed at reducing the set of extracted patterns to a smaller, more interesting, subset. Although a lot of work has been done with both these paradigms, there is still confusion around the mining problem obtained by joining closed and constrained frequent patterns in a unique framework. In this paper, we shed light on this problem by providing a formal definition and a thorough characterisation. We also study computational issues and show how to combine the most recent results in both paradigms, providing a very efficient algorithm that exploits the two requirements (satisfying constraints and being closed) together at mining time in order to reduce the computation as much as possible. Francesco Bonchi received his Ph.D. in computer science from the University of Pisa in December 2003, with the thesis “Frequent Pattern Queries: Language and Optimizations”. Currently, he is a postdoc at the Institute of Information Science and Technologies (ISTI) of the Italian National Research Council in Pisa, where he is a member of the Knowledge Discovery and Delivery Laboratory. He has been a visiting fellow at the Kanwal Rekhi School of Information Technology, Indian Institute of Technology, Bombay (2000, 2001). His current research interests are data mining query language and Optimization, frequent pattern mining, privacy-preserving data mining, bioinformatics. He is one of the teachers of a course on data mining held at the faculty of Economics at the University of Pisa. He served as a referee at various national and international conferences on databases, data mining, logic programming and artificial intelligence. Claudio Lucchese received the Master Degree in Computer Science summa cum laude from Ca' Foscari University of Venice in October 2003. He is currently a Ph.D. student at the same university and Research Associate at the Institute of Information Science and Technologies (ISTI) of the Italian National Research Council in Pisa, where he is a member of the High Performance Computing Laboratory. He is mainly interested in frequent pattern mining, privacy-preserving data mining, and data mining techniques for information retrieval.  相似文献   

20.
We study the problem of segmenting a sequence into k pieces so that the resulting segmentation satisfies monotonicity or unimodality constraints. Unimodal functions can be used to model phenomena in which a measured variable first increases to a certain level and then decreases. We combine a well-known unimodal regression algorithm with a simple dynamic-programming approach to obtain an optimal quadratic-time algorithm for the problem of unimodal k-segmentation. In addition, we describe a more efficient greedy-merging heuristic that is experimentally shown to give solutions very close to the optimal. As a concrete application of our algorithms, we describe methods for testing if a sequence behaves unimodally or not. The methods include segmentation error comparisons, permutation testing, and a BIC-based scoring scheme. Our experimental evaluation shows that our algorithms and the proposed unimodality tests give very intuitive results, for both real-valued and binary data. Niina Haiminen received the M.Sc. degree from the University of Helsinki in 2004. She is currently a Graduate Student at the Department of Computer Science of University of Helsinki, and a Researcher at the Basic Research Unit of Helsinki Institute for Information Technology. Her research interests include algorithms, bioinformatics, and data mining. Aristides Gionis received the Ph.D. degree from Stanford University in 2003, and he is currently a Senior Researcher at the Basic Research Unit of Helsinki Institute for Information Technology. His research experience includes summer internship positions at Bell Labs, AT&T Labs, and Microsoft Research. His research areas are data mining, algorithms, and databases. Kari Laasonen received the M.Sc. degree in Theoretical Physics in 1995 from the University of Helsinki. He is currently a Graduate Student in Computer Science at the University of Helsinki and a Researcher at the Basic Research Unit of Helsinki Institute for Information Technology. His research is focused on algorithms and data analysis methods for pervasive computing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号