首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipopolysaccharides (LPS) are amphiphilic molecules in the outer leaflet of the bacterial outer membrane. Recently, an early role for LPS in the folding of outer membrane porin PhoE was demonstrated in vitro. In order to elucidate the molecular mechanism of LPS-protein interactions, folding of PhoE protein was studied with a large set of well characterized LPS chemotypes. We demonstrate that negative charges in the inner core region contribute to the high efficiency of folding of PhoE protein. In addition, the supramolecular structure of the LPS aggregate seems to be important. LPS with a lipid A part that prefers a lamellar or a direct micellar structure and a high state of order of its acyl chains is much less efficient to support folding as compared with LPS with lipid A that prefers a non-lamellar structure and a low acyl chain order. These in vitro data indicate that extensive interactions between the core and lipid A region of LPS with the protein are required to support protein folding. The LPS-PhoE binding might be promoted by the presence of hydroxy fatty acids in the lipid A moiety of LPS.  相似文献   

2.
The epidermis has a requirement for fatty acids in order to synthesize cellular membranes and the extracellular lipid lamellar membranes in the stratum corneum. Despite high endogenous production of fatty acids the transport of exogenous essential fatty acids into the epidermis is an absolute requirement. Fatty acid uptake by keratinocytes has been shown to be mediated by a transport system. In this study we determined in murine epidermis and human cultured keratinocytes the expression of three putative fatty acid transport related proteins and fatty acyl CoA synthase, an enzyme that facilitates the uptake of fatty acids by promoting their metabolism. In cultured human keratinocytes, mRNA for fatty acid transport protein (FATP), plasma membrane fatty acid binding protein (FABP-pm), and fatty acyl CoA synthase (FACS) were detectable. Differentiation, induced by high calcium, did not affect FATP mRNA levels, but resulted in an approximately 50% increase in FACS mRNA, while decreasing FABP-pm mRNA by 50%. Fatty acid translocase (FAT) mRNA was not detected in cultured human keratinocytes. In murine epidermis, FATP, FABP-pm, FACS, and FAT mRNA were all present. Barrier disruption by either tape stripping or acetone treatment increased FAT mRNA levels by approximately 2-fold without affecting FATP, FABP-pm, or FACS. Occlusion with an impermeable membrane immediately after barrier disruption completely blocked the increase in FAT mRNA levels, indicating that this increase is related to barrier disruption rather than a nonspecific injury effect. In summary, this study demonstrates that several putative fatty acid transport related proteins as well as fatty acyl CoA synthase are expressed in keratinocytes and epidermis, and that the expression of these proteins may be regulated by differentiation and/ or barrier disruption.  相似文献   

3.
Alterations in the lipid and fatty acid composition of brush border membrane (BBM) of small intestine were studied in well-fed, starved, and refed rats. The ratios of cholesterol/phospholipid (mol/mol), sphingomyelin/phosphatidylcholine (mol/mol), protein/lipid (w/w), and free fatty acids (w/w) decreased whereas the total phospholipid (w/w) ratio and the double-bond index increased in BBM of the intestine of the starved rat compared to that of the well-fed rat. Analyses of fatty acids showed higher percentage of stearic and arachidonic acids whereas oleic and linoleic acids decreased under starvation. The acyl chain of starved rat BBM was less ordered compared with that of well-fed rat BBM. On refeeding, these changes were restored to well-fed levels. The change in membrane state under starvation is associated with alterations in the lipid and fatty acid composition of BBM and may be responsible for functional changes that occur under nutritional stress.  相似文献   

4.
Fatty acid-binding proteins (FABPs) found in many tissues constitute a family of low molecular weight proteins that are suggested to function as intracellular transporters of fatty acids. Studies of the transfer kinetics of fluorescent anthroyloxy-labeled long-chain fatty acids from FABP to model membranes led to the suggestion that the FABPs, typically considered to be cytosolic proteins, could nevertheless interact directly with membranes [Wootan, M. G., et al. (1993) Biochemistry 32, 8622-8627]. In the current study, the interaction of the adipocyte FABP (A-FABP) with vesicles of various phospholipids has been directly measured and confirmed with FTIR spectroscopy. The strength of this interaction was inferred from the lowering of the gel-liquid-crystal phase transition temperature as monitored from temperature-induced variations in the acyl chain CH2 stretching frequencies and from the intensities of the components of the CH2 wagging progressions. A-FABP interacts more strongly with anionic phospholipids (phosphatidylserine and cardiolipin) than with zwitterionic phosphatidylcholine. Unsaturation in the acyl chains leads to a greater reduction in Tm (stronger lipid-protein interaction). In contrast, neutralization of A-FABP surface charges by acetylation considerably weakens the interaction. Comparison of the shifts in lipid melting temperatures with those induced by other proteins suggests that A-FABP behaves like a typical peripheral membrane protein. The degree of membrane interaction correlates directly with the rate of fatty acid transfer, suggesting that contact between A-FABP and membranes is functionally related to its fatty acid transport properties. As expected, the protein exhibits a predominantly beta-sheet structure. It was found to aggregate with increasing temperature. With the exception of minor differences between the pure and lipid-associated A-FABP in the 1640-1660 cm-1 region, both the protein structure and thermal stability appeared essentially unchanged upon interaction with the lipid.  相似文献   

5.
Regulation of lipid metabolism during infection is thought to be part of host defense, as lipoproteins neutralize endotoxin (LPS) and viruses. Gram-positive infections also induce disturbances in lipid metabolism. Therefore, we investigated whether lipoproteins could inhibit the toxic effects of lipoteichoic acid (LTA), a fragment of gram-positive bacteria. LTA activated RAW264.7 macrophage cells, stimulating production of tumor necrosis factor (TNF) in a dose-dependent matter, but produced less TNF than that seen after LPS activation. High density (HDL) or low density lipoprotein (LDL) alone inhibited the ability of LPS to stimulate TNF production, but had little effect on the activation by LTA. When a maximally effective dose of LTA was mixed with lipoproteins and 10% lipoprotein-depleted plasma (LPDP), the ability of LTA to stimulate macrophage production of TNF was inhibited. HDL, LDL, and the synthetic particle, Soyacal, when mixed with LPDP, were able to inhibit the ability of LTA to activate macrophages. Lipopolysaccharide-binding protein (LBP) substituted for LPDP in catalyzing lipoprotein neutralization of LTA by HDL. Antibody to LBP inhibited the ability of LPDP to induce LTA neutralization by HDL.Thus, lipoproteins can prevent macrophage activation by fragments from both gram-positive and gram-negative microorganisms.-Grunfeld, C., M. Marshall, J. K. Shigenaga, A. H. Moser, P. Tobias, and K. R. Feingold. Lipoproteins inhibit macrophage activation by lipoteichoic acid.  相似文献   

6.
The objective of this study was to investigate membrane fatty acids for their effects on mitochondrial function in live cells. Mitochondrial potential and oxidant production were measured in human colonic adenocarcinoma (HT-29) cells with membranes enhanced in either oleic acid, linoleic acid, arachidonic acid, eicosapentaenoic acid, or docosahexaenoic acid. Docosahexaenoic acid-enriched cells had increased mitochondrial potential and produced 5-fold more cellular oxidants than did cells enriched with any other fatty acid. Oxidant production in fatty acid-enriched HT-29 cells did not correlate with the degree of unsaturation for total membrane fatty acids. However, there was a strong correlation between the degree of fatty acid unsaturation of cardiolipin, a critical inner-mitochondrial membrane phospholipid, and oxidant production. Cardiolipin acyl composition is known to influence the activity of electron transport complexes, an effect that can increase mitochondrial oxidant production. Docosahexaenoic acid was enriched to 48 mol% of the fatty acids present in HT-29 cell cardiolipin. These results demonstrate the importance of membrane acyl composition to mitochondrial potential and oxidant production in live cells. Additionally, results suggest that docosahexaenoic acid increases cell oxidant production by accumulating in cardiolipin, where its presence alters electron transport efficiency.  相似文献   

7.
We investigated the influence of four different culture media: 20% fetal bovine serum (FBS), 5% FBS, 5% FBS supplemented with 10 mg x L(-1) linoleic acid (18:2(n-6)) or alpha-linolenic acid (18:3(n-3)) on alpha-linolenic acid apical uptake in clone TC7 of human intestinal Caco-2 cell line. Neither cellular viability nor cell monolayer integrity and permeability were altered by the four culture conditions. Our results show that the different culture media led to changes in alpha-linolenic acid maximal rate of uptake (Vmax) but did not alter the apparent transport constant (Km). Reducing FBS concentration from 20% to 5% increased significantly the rate of alpha-linolenic acid uptake, which was further increased by supplementation of the medium with 18:2(n-6) or 18:3(n-3). Supplementation with essential fatty acids led to a marked enrichment of brush-border membrane phospholipids in polyunsaturated fatty acids of the corresponding series and decreased significantly the levels of monounsaturated fatty acids. Saturated fatty acids, unsaturation index, and cholesterol/fatty acid ratios were unchanged. No clear relation could be established between the changes in membrane lipid composition and the alterations of alpha-linolenic acid uptake. These results indicate a weak influence of membrane lipid composition in the modulation of the uptake. Therefore, the increase of uptake following long-term supplementation of TC7 cells with essential fatty acids could be attributed to an increase of the expression of membrane protein(s) involved in the apical uptake of long-chain fatty acids. This remains to be established.  相似文献   

8.
The fatty acid composition of Ehrilich ascites tumor cell nuclei was differend when the tumor-bearing mice were fed diets rich in either coconut or sunflower oil. When coconut oil was fed, the monoenoic fatty acid content of many of the nuclear lipids was increased and their polyenoic fatty acid content was reduced as compared with the sunflower oil diet. By contrast, only small changes were produced in the saturated fatty acid contents of the nuclear lipids. The nuclear membrane choline phospholipid, ethanolamine phospholipid and combined serine phospholipid plus inositol phospholipid fractions exhibited statistically significant changes in fatty acid composition, but the sphingomyelins were not altered appreciably by dietary lipid modification. The fatty acid composition of the small quantity of phospholipids associated with the chromatin was much more resistant to diet-induced mosification. Except for sphingomyelin, the fatty acid composition of the chromatin phospholipids was different from that of the corresponding nuclear membrane phospholipids, containing much larger amounts of fatty acids having less than 16 carbon atoms. The fatty acid compositons of the nuclear triaclglycerols and cholesterol esters, which were associated almost entirely with the chromatin, were modified by the dietary lipid modifications. There were no changes in the DNA, RNA or lipid content of these nuclei. Therefore, this experimental system can be used to prepare mamalian nuclei that differ appreciably only in their fatty acyl composition.  相似文献   

9.
Antifungal fatty acids produced by the biocontrol fungus Sporothrix flocculosa were studied on the basis of their effect on growth and cellular lipid composition of three fungi, Cladosporium cucumerinum, Fusarium oxysporum, and S. flocculosa, whose growth was decreased by 51, 33, and 5%, respectively, when exposed to 0.4 mg fatty acid per ml. The sensitivity to fatty acid antibiotics from S. flocculosa was related to a high degree of unsaturation of phospholipid fatty acids and a low proportion of sterols. The major responses of sensitive fungi to sublethal doses of antifungal fatty acids from liquid culture of S. flocculosa were: (i) a decrease in total lipid; (ii) an increase in the degree of fatty acid unsaturation (18:1 > 18:2 > 18:3); (iii) an increase in free fatty acids and phosphatidic acid and a decrease in total phospholipids; and (iv) an increase in sterol/phospholipid ratio. These modifications in lipid composition led to an increase in membrane fluidity in sensitive fungi as demonstrated by assessment of fluoresence anisotropy using liposomes and 1,6-diphenyl-1,3,5-hexatriene probe. This alteration in the physical state of lipids appears to be responsible for the previously demonstrated alteration of membrane structure and function in fungi confronted to S. flocculosa.  相似文献   

10.
The production of eicosapentaenoic acid [20:5omega3; EPA] from Shewanella gelidimarina (ACAM 456T) was investigated with respect to growth temperature and growth on sole carbon sources. The percentage and quantitative yield of EPA remained relatively constant at all growth temperatures within or below the optimal growth temperature region. At higher growth temperatures, these values decreased greatly. Growth on differing sole carbon sources also influenced the percentage and amount of EPA produced, with the fatty acid composition influenced by provision of potential acyl chain primers as sole carbon sources. The highest amounts of EPA occurred from growth on propionic acid and L-leucine respectively, while the highest percentage of EPA occurred from growth on L-proline. Monounsaturated fatty acid components and EPA were concentrated in phosphatidylglycerol (PG), while the proportion of branched-chain fatty acids was elevated in phosphatidylethanolamine (PE); the two major phospholipid classes. Specific associations of EPA with other acyl chains were identified within cellular phospholipid classes. The association of EPA with 17:1 and 18:0 acyl chains in phospholipid species was specific to PG, whereas the association of EPA with i13:0/13:0 and 14:0/i14:0 was specific to PE. Such acyl chain 'tailoring' is indicative of the important role of EPA in bacterial membrane adaptive responses. EPA was also a large component (22%) of a non-esterified fatty acid (NEFA) fraction within the total lipid extract of the bacterium. This may point toward a particular role of NEFA in polyunsaturated fatty acid (PUFA) metabolism. The formation of EPA was investigated by labelling with L-[U-14C]serine and sodium [1-14C]acetate. The accumulation of radiolabel within unsaturated intermediates (di-, tri- and tetraunsaturated fractions) was low, indicating a rapid formation and derivatisation of these components. Similar results were found for the unsaturated fatty acid fractions of both PE and PG using sodium [1-14C]acetate radiolabel. The regulation of triunsaturated fatty acid components may be a potential control site in PUFA biosynthesis.  相似文献   

11.
Tissue destruction during periodontitis is believed to be primarily brought about by leukocyte proteinases. We postulate that oral spirochetes cause discharge of polymorphonuclear leukocyte (PMN) lysosomal enzymes. Effects of Treponema denticola 53-kDa outer membrane protein, lipopolysaccharide (LPS), and peptidoglycan on degranulation of matrix metalloproteinases (MMP)-8 (collagenase) and -9 (gelatinase), cathepsin G, and elastase by human peripheral blood PMNs were studied by specific enzyme assays and Western blot analysis. T. denticola 53-kDa kDa outer membrane protein was found to be a particularly efficient inducer of MMP-8 release. The induction was comparable with that of phorbol myristate acetate, a known inducer of PMN specific granule discharge. All of the treponemal substances, most notably the 53-kDa protein and LPS, induced release of MMP-9, a component of C-type granules. Both collagenase and gelatinase released from PMNs were mostly in active forms. Release of cathepsin G and elastase was also observed with the 53-kDa protein treatment. The other T. denticola substances did not induce release of these serine proteinases. Lactate dehydrogenase was not released from PMNs by the treatments, indicating that the degranulation was specific and not caused by toxic effects of the substances. This was confirmed by transmission electron microscopy of PMNs treated with the 53-kDa protein that showed rapid vacuole formation and cell shape changes but no disintegration of the cells. Thus, T. denticola may participate in the PMN-dependent extracellular matrix degradation during the course of periodontal inflammation by triggering the secretion and activation of matrix metalloproteinases.  相似文献   

12.
Purified outer membrane of beef liver mitochondria was found to elongate medium chain fatty acyl-CoA primer by the incorporation of [1-14C]acetyl-CoA. This enzymic activity, extracted by Triton X-100, was purified 8-fold by ammonium sulfate fractionation followed by chromatography on a Sephadex column. Purified inner membrane, when processed through an identical purification procedure, yielded a second enzyme system which incorporated [1-14C]acetyl-CoA into long chain fatty acids in the presence of medium chain fatty acyl-CoA primer. This enzyme preparation was about four times as active as the preparation from the outer membrane, and used NADH as the reductant for the synthesis. The molecular weights of the inner and the outer membrane enzyme systems, estimated by gel filtration as well as sucrose density gradient centrifugation, were approx. 57 000 and 126 000, respectively. The partially purified outer membrane enzyme system required NADH and a medium chain acyl-CoA primer for the incorporation of [1-14C]acetyl-CoA into long chain fatty acids. KNC stimulated the reaction. NADPH could substitute for NADH only to a limited extent. Malonyl-CoA was ineffective as a substrate in this reaction. The optimum pH of the reaction was 7.2-7.6 in 0.1 M potassium phosphate buffer. Dithiothreitol, beta-mercaptoethanol, N-ethylmaleimide and high concentrations of ATP and acyl-CoA primer inhibited the reaction. The specificity for the acyl-CoA primer in the reaction was very broad. All the primers tested, C8 to C16, incorporated acetyl-CoA significantly. However, maximum incorporation was observed with dodecanoyl-CoA. Decanoyl-CoA was the best primer for the enzyme system isolated from the inner membrane. About 42% of the radioactivity in the fatty acids synthesized by the outer membrane enzyme system, from myristoyl-CoA and [1-C14]acetyl-CoA, was in palmitic acid. Of the remaining activity, 41% was in stearic acid and about 38% in longer-chain acids. Hence, the elongation of the primer fatty acid by one C2 unit appeared to be the predominant process in this synthesis. In the elongation of myristoyl-C0A by the inner membrane enzyme system, palmitic acid which constituted nearly 78% of the fatty acids synthesized, was the primary product.  相似文献   

13.
Neutrophils isolated from patients with bacterial infections or stimulated in vitro with lipopolysaccharide (LPS) produce a high resolution, lipid-dominated spectrum on 1H-NMR spectroscopy (May et al, 1993. J. Infect. Dis. 168: 386-392). We have investigated the origin of this lipid signal using NMR and chemical analyses of both whole neutrophils and purified plasma membranes. Plasma membranes from neutrophils that had been stimulated with 50 microg/ml LPS exhibited the high resolution 1H-NMR signal, and contained double the triacylglycerol (TAG) content of plasma membranes isolated from resting cells. Chemical analysis of the whole cells indicated that the TAG also increased at the cellular level (1.7-fold) after stimulation with LPS. Diradylglycerol increased 2- to 3-fold in both whole cells and plasma membranes after stimulation, but was only a minor component compared with TAG. The plasma membrane protein/phospholipid ratio increased 2.6-fold, whereas cholesterol (free and esterified) was unchanged. The membranes from LPS-stimulated neutrophils exhibited increased fluidity, as judged by increased merocyanine 540 binding, consistent with a 2-fold reduction in cholesterol/phospholipid ratio. LPS induced a shift in fatty acid content of whole cell polar lipids towards more oleic acid and less palmitic acid, whereas the neutral lipid fraction contained increased amounts of palmitic and stearic acids. The TAG fraction of plasma membrane lipids contained increased amounts of palmitic acid when prepared from cells stimulated with LPS. We conclude that the 1H-NMR signal in LPS-stimulated neutrophils arises from increased amounts of plasma membrane TAG with an elevated content of palmitic acid.  相似文献   

14.
Administration of total parenteral nutrition (TPN) with soybean oil emulsion leads to a linoleic acid enrichment of the plasma membrane that may explain an in vivo activation of mononuclear cells (MNC) seen in our previous studies. Fatty acids from the lipid emulsion may have been accessible to MNC after endocytosis of lipid particles, or by direct uptake of fatty acids after lipoprotein lipase hydrolyzation of the emulsion triglycerides. To resemble the incorporation of fatty acids in vivo, we have modified MNC membrane lipid composition by incubation with different albumin-bound unsaturated fatty acids (UFA) or soybean oil emulsion. After incubation with albumin-bound linoleic and oleic acid, the unstimulated release of superoxide anion was unchanged, while zymosan-stimulated release was 140% (n.s) and 112% (p < 0.05) and phorbol-myristate-acetate (PMA)-stimulated release 148% (p < 0.05) and 124% (p < 0.05) of controls, respectively. Incubation with other UFAs or emulsion did not change superoxide anion release. Unstimulated lymphocyte proliferation increased 3 to 13-fold (p < 0.05) after incubation with all UFAs compared to controls, while UFA incubation did not change phytohemagglutinin (PHA) or PMA-stimulated proliferation. Unstimulated lymphocyte proliferation was decreased after incubation with emulsion, while PHA/PMA-stimulated proliferation was unchanged. Increase in membrane fluidity was detectable only after incubation with emulsion. The increased reactivity may have been caused by changes in the lipid environment surrounding membrane-bound enzymes important for signal transduction through the plasma membrane.  相似文献   

15.
Fatty acid composition of blubber was determined at four body sites of 19 male harbour porpoises. A total of 65 fatty acids were quantified in each sample. The array of fatty acids contained in harbour porpoise blubber was similar to those found in other marine mammals. While chemical composition of total blubber was uniform over the body, with the exception of the caudal peduncle, vertical stratification was evident between the deep (inner) and superficial (outer) blubber layers. Fatty acids with chain lengths shorter than 18 carbons were present in significantly greater amounts in the outer blubber layer, while the longer-chain unsaturated fatty acids were more prevalent in the inner layer. This distribution suggests that the inner blubber layer is more active metabolically than the outer layer in terms of lipid deposition and mobilization. The degree of stratification between the two layers appears to increase with age, indicating a predictable turnover in the blubber layer of male porpoises. Harbour porpoise blubber contained high levels (2-27%) of isovaleric acid in the outer blubber layer, and these levels were positively correlated with age.  相似文献   

16.
The aim of this work was to study the adaptation of enzymatic antioxidant cell defense to the nature of the membrane polyunsaturated fatty acids (PUFA). 3T3 Swiss fibroblasts were grown for 5 days in a medium supplemented with 50 microM linoleic acid (LA) or eicosapentaenoic acid (EPA) and compared to control cells (C). The phospholipid fatty acid content was evaluated: LA were enriched in n-6 PUFA (27.8%) in comparison to C (6.7%) or EPA (5.6%); EPA were enriched in n-3 PUFA (26.2%) in comparison to LA (4.4%) or C (4.6%). The fatty acid double bond index (DBI) increased from C to LA and EPA. The activities of the three key enzymatic antioxidant defenses, SOD, GPx and GST, increased with the degree of unsaturation of the phospholipid fatty acids. In the cells with fatty acids that are very sensitive to oxidative stress, the higher activities of SOD and GPx might act to limit the initiation of lipid peroxidation and the higher activities of GST and GPx to decrease the toxic effects of the various species produced from lipid degradation.  相似文献   

17.
Fatty acids derived from phospholipids and lipopolysaccharides were investigated from 33 taxonomically different organisms (bacteria, fungi and plant cells) known a priori to inhabit soil (except E. coli). The extended extraction procedure used, liberated non-ester-linked fatty acids in addition to ester-linked fatty acids, hydroxy substituted fatty acids in three different fractions. The amount of non-ester-linked fatty acids was as high as 70% of the total phospholipid fatty acids in some fungi and varied considerably in different organisms. The cis vaccenic acid constituted about 50% of phospholipid fatty acids in selected bacteria belonging to the alpha subclass of Proteobacteria. These fatty acids were not found in other selected organisms. A large amounts of branched chain fatty acids were found in various organisms. If the branching are localised on positions other than iso and anteiso they were strong indicators for gram positive bacteria. The cyclopropyl fatty acids are mainly localized in gram negative bacteria. The beta hydroxy fatty acid of the outer membrane are widespread among bacterial taxa and fungi. These fatty acids are not recommended to use as "signature" fatty acids for gram negative bacteria.  相似文献   

18.
The location of a series of lipophilic and lipid-attached BODIPY (4, 4-difluoro-4-bora-3a,4a-diaza-s-indacene) membrane probes was analyzed by the quenching of BODIPY fluorescence by a series of nitroxide-labeled lipids in which the depth of the nitroxide group is varied. When attached to the polar headgroup of PE the BODIPY remained near the polar headgroup in depth. However, when attached at the end of free or phospholipid-attached fatty acyl chains, or when attached to two hydrocarbon chains, we observed two probe populations. One, usually dominant, population of BODIPY groups 'looped back' towards the surface, but a second population remained deeply embedded within the bilayer. When attached to a fatty acid or fatty acyl chain, the deep population appeared to locate at a depth related to its point of attachment to the acyl chain. In BODIPY linked to free fatty acids, the location of the deep population responded to the ionization of the carboxyl group. Because, unlike NBD (7-nitro-2,1,3-benzoxadiazol-4-yl) and most dansyl groups, acyl chain linked BODIPY groups can exist in a deeply buried form we conclude that BODIPY linked acyl chains are superior to NBD or dansyl linked acyl chains as membrane probes.  相似文献   

19.
The hydrophobic myelin proteolipid protein (PLP) contains covalently bound long-chain fatty acids which are attached to intracellular cysteine residues via thioester linkages. To gain insight into the role of acylation in the structure and function of myelin PLP, the amount and pattern of acyl groups attached to the protein during vertebrate evolution was determined. PLP isolated from brain myelin of amphibians, reptiles, birds and several mammals was subjected to alkaline methanolysis and the released methyl esters were analyzed by gas-liquid chromatography. In all species studied, PLP contained approximately the same amount of covalently bound fatty acids (3% w/w), and palmitic, palmitoleic, oleic and stearic acids were always the major acyl groups. Although the relative proportions of these fatty acids changed during evolution, the changes did not necessarily follow the variations in the acyl chain composition of the myelin free fatty acid pool, suggesting fatty acid specificity. The phylogenetic conservation of acylation suggests that this post-translational modification is critical for PLP function.  相似文献   

20.
Mitochondria isolated from rats chronically fed ethanol demonstrated a marked inability to produce energy. The respiratory control ratio, the ADP/O ratio and state 3 respiration rates were all decreased. Coupled with other data, a progression of ethanol-induced changes is proposed with site I being altered prior to site II. Quantitation of mitochondrial cytochromes revealed decreases in cytochromes b and aa3 and an increase in c1. Evaluation of respiration activity in relation to temperature showed ethanol-induced changes in the transition temperature (Tf) which may have been related to changes in the lipid composition of the inner membrane. Mitochondrial membranes were separated, and analysis of fatty acids and phospholipids was performed. Various fatty acids were altered in both membranes; however, the outer membrane was altered more severely. A decrease in the arachidonate : linoleate ratio was observed only in the outer membrane; however, there was no ethanol-induced change in degree of unsaturation in either membrane. Phospholipid quantitation showed a reduction of total lipid phosphorous/mg protein in both membrane fractions; however, the inner membrane was most affected. Cardiolipin was the only phospholipid in this membrane which remained unaltered. The evidence indicates that the mechanism for ethanol-induced damage to the liver mitochondrion involves lipid compositional changes as well as changes in cytochromes and possibly other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号