首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of Al3+, B3+, P5+, Fe3+, S6+, and K+ ions on the stability of the β-phase and its hydration rate were studied in reactive dicalcium silicate (C2S, Ca2SiO4) synthesized using the Pechini process. In particular, the dependences of the phase stability and degree of hydration on the calcination temperature (i.e., particle size) and the concentration of the stabilizing ions were investigated. The phase evolution in doped C2S was determined using XRD, and the degree of hydration was estimated by the peak intensity ratio of the hydrates to the nonhydrates in 29Si MAS NMR spectra. The stabilizing ability of the ions varied significantly, and the B3+ ions were quite effective in stabilizing the β-phase over a wide range of doping concentrations. The hydration results indicated that differently stabilized β-C2S hydrated at different rates, and Al3+- and B3+-doped C2S exhibited increased degree of hydration for all doping concentration ranges investigated. The effect of the doping concentration on degree of hydration was strongly dependent on the stabilizing ions.  相似文献   

2.
A mixture of CaO and silicic acid prepared with a Ca/Si ratio of 2.0 was hydrothermally synthesized at 80° to 200°C, and the thermal decomposition behavior of the products (C-S-H with Ca(OH)2) was analyzed using XRD, 29Si MAS NMR, and the trimethylsililation method (TMS). It was found that the main silicate anion structure of C-S-H was a mixture of a dimer and a single-chain polymer (larger than Si5O16) and that polymerization advanced with an increase of the synthesizing temperature. On heating, the products decomposed to form β-C2S. It was found that the decomposition was gradual and that the-higher the temperature of hydrothermal synthesis, the lower was the temperature of the decomposition into β-C2S. Although the decomposition proceeded to form a monomer (β-C2S) from the polymer and dimer, this dimer was resistant to heat and did not decompose unless heated to above 400°C.  相似文献   

3.
Hydrated calcium silicates containing Al3+] or Fe3+] were prepared by autoclaving C3S and β-C2S in the presence of C3A or C2F at 190°C. Al3+] and Fe3+] diffuse into the crystal lattice of α-C2SH and C3SH1.5. Solid solutions containing Al3+] and Fe3+] were placed in contact at 25°C with sources of sulfates, either in aqueous stirred suspensions or as pastes. Al3+] and Fe3+] remain stable in the solid solution, inhibiting the formation of ettringite. This absence of ettringite can explain the resistance of autoclaved cement pastes and concretes to sulfate attack.  相似文献   

4.
β-dicalcium silicate synthesized by thermal dissociation of hydrothermally prepared hillebrandite (Ca2(SiO3)(OH)2) exhibits extremely high hydration activity. Characterization of the hydrates obtained and investigation of the hydration mechanism was carried out with the aid of trimethylsilylation analysis, 29Si magic angle spinning nuclear magnetic resonance, transmission electron microscopy selected area electron diffraction, and XRD. The silicate anion structure of C-S-H consisted mainly of a dimer and a single-chain polymer. Polymerization advances with increasing curing temperature and curing time. The C-S-H has an oriented fibrous structure and exhibits a 0.73-nm dreierketten in the longitudinal direction. On heating, the C-S-H dissociates to form β-C2S. The temperature at which βC2S begins to form decreases with increasing chain length of the C-S-H or as the Ca/Si ratio becomes higher. The high activity of β-C2S is due to its large specific surface area and the fact that the hydration is chemical-reaction-rate-controlled until its completion. As a result, the hydration progresses in situ and C-S-H with a high Ca/Si ratio is formed.  相似文献   

5.
α-C2SH can be synthesized by hydrothermal treatment of lime and silicic acid for 2 h at 200°C. When heated to 390–490°C, α-C2SH dissociates through a two-step process to form an intermediate phase plus some γ-C2S. This appears to be a new dicalcium silicate different from known dicalcium silicates—α, α'L, α'H, β, and γ phase—and is stable until around 900°C. At 920–960°C, all the phases are transformed to the α'L phase. The intermediate phase has high crystallinity and is stable at room temperature. 29 Si MAS NMR measurements indicate the possibility that it contains both protonated and unprotonated monosilicate anions. The intermediate phase that has passed through the α'phase at higher temperature yields β-C2S on cooling. The intermediate phase is highly active, and completed its hydration in 1 day ( w/s = 1.0, 25°C). Among the crystalline calcium silicate hydrates with Ca/Si = 2.0, it is hillebrandite that yields β-C2S at the lowest temperature.  相似文献   

6.
29Si magic-angle spinning nuclear magnetic resonance (MASNMR) was used to study the room-temperature hydration of C3S, ß-C2S, and reactive ß-C2S mixed with different amounts of silica fume (SF) that had been hydrated up to nine months and longer. The overall CaO:SiO2 molar ratios of the mixes were 0.12, 0.20, 0.35, 0.50, and 0.80. NMR spectroscopy was used to quantify the remaining starting materials and the resulting hydration products of different species. A broad peak assigned to Q3, appearing in both the fourier transform (FT) and the cross-polarization (CP) modes, increased in intensity with increased SF content and with age. This Q3 species was attributed to two sources: (1) the surface hydroxylation of SF and (2) the cross-linking of dreierketten (chains of silicate tetrahedra arranged in a repeating three-unit conformation) in the calcium silicate hydrate (C-S-H) structure. A Q4 species also appeared in the CP spectra of samples with large SF additions after extended hydration and was attributed to cross-polarization by adjacent hydroxylated Q3 species at the surface of amorphous SiO2.  相似文献   

7.
The green emitting Ca2SiO4:Eu2+ (C2S:Eu) phosphors were synthesized by the polymeric precursor process (Pechini-type), and the effects of calcination temperature and europium (Eu) doping concentration on the luminescent properties were investigated. The crystalline β-C2S was obtained in the calcination temperature of 1100°–1400°C, and Eu was reduced into Eu2+ by annealing in 5% H2/N2 atmosphere. The obtained C2S:Eu2+ phosphors exhibited a strong emission at 504 nm under the excitation of λexc=350 nm. The highest photoluminescence (PL) intensity was observed in the C2S:Eu2+ phosphors either calcined at 1300°C or doped with 3 mol% Eu. The obtained PL properties were discussed in terms of crystal structure, particle size and shape, surface roughness, and effect of concentration quenching.  相似文献   

8.
29Si, 27Al, and 1H MAS NMR studies of partially carbonated mature ordinary Portland cement (OPC) and tricalcium silicate (C3S) pastes have been carried out. The water-to-solid ratios ( W/S ) have been varied between 0 and 1 at hydration temperatures of 23o and 90oC. Various Q ni units with n =0, 1,2,3, and 4, and a Q3 (1Al) group have been identified using 29Si NMR. Cross-polarization experiments, in addition, have made it possible to assign the OH groups. Two types of fourfold- and one type sixfold-coordinated aluminum have been distinguished using 27Al NMR. In C3S pastes for w/s >0.7, progressive carbonation leads to a nearly perfect three-dimensional network consisting of Q3 and Q4only. In contrast, in OPC pasted only about 40% of the highly polymerized silicate units are formed, partially copolymerized with AlO4 tetrahedra.  相似文献   

9.
Early-stage thermal oxidation (below 1100°C) of carbothermally synthesized β-sialon powder was monitored by X-ray powder diffraction, solid-state 29Si and 27Al MAS NMR spectroscopy, and thermogravimetry. No crystalline oxidation products were detected by XRD but 29Si and 27Al MAS NMR indicated the early formation of amorphous silica, followed by the formation of an amorphous aluminosilicate with an atomic environment similar to that of mullite. The initial oxidation was described by a linear kinetic law with an activation energy of 170 kJmol−1, suggesting the rate-limiting step to be due to dissolution of O2 in an amorphous silica surface layer on the β-sialon particles.  相似文献   

10.
Beta C2S was hydrated at room temperature with and without added CaCl2 or C2H5OH by methods previously studied for the hydration of C3S, i.e. paste, bottle, and ball-mill hydration. The amount of reacted β-C2S, the Ca(OH)2 concentration in the liquid phase, the CaO/SiO2 molar ratio, and the specific surface area of the hydrate were investigated. A topochemical reaction occurs between water and β-C2S, resulting in the appearance of solid Ca(OH)2 and a hydrated silicate with a CaO/SiO2 molar ratio of ≃1. As the liquid phase becomes richer in Ca(OH)2, the first hydrate transforms to one with a higher CaO/SiO2 ratio. Addition of CaCl2 increases the reaction rate and the surface area of the hydrate but to a much lesser extent than in the hydration of C3S, whereas C2H6OH strongly depresses the hydration rate of β-C2S, as observed for C3S hydration.  相似文献   

11.
Selective Cation Exchange in Substituted Tobermorites   总被引:1,自引:0,他引:1  
Selective cation exchange in tobermorites with three levels of Al3+ and Na+ substitution for Si4+ has been investigated. The cation exchange selectivity for a tobermorite with 2 mol% Al3+ and 0 mol% Na+ substitution increased as follows: Mg2+ > Ba2+ > Sr2+. Cation exchange in the above tobermorite is postulated to take place mainly from edge and planar surface sites and apparently from interlayer Ca2+ sites. Tobermorites with 10 and 15 mol% Al3+ (and Na+) substitution have additional Na+ exchange sites in the interlayers and show the following selectivity: Ba2+ > Sr2+ > Mg2+. The cation exchange selectivity in the substituted tobermorites can be explained by the hydrated radii of cations and the steric limitations of the ion exchange cavity in tobermorite; the latter was determined by 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy. These basic selective cation exchange studies of substituted tobermorites are of relevance in nuclear waste treatment and disposal.  相似文献   

12.
Using a novel combustion method, Eu-doped Eu:yttrium aluminum garnet (YAG) and Eu:YSAG powders, and transparent Eu:YSAG ceramics were fabricated. The optical properties of these transparent ceramics have been measured, and a reduced peak splitting of Eu3+ for 5D07F1 and 5D07F2 was observed when 10 at.% Al3+ was substituted by Sc3+. The enhanced symmetry of the Eu sites in YAG lattice, which resulted from the expanded YSAG lattice by Sc3+ doping, is the main reason for the reduced peak splitting.  相似文献   

13.
Selective isotopic enrichment of SiO2 with 29Si in a mixture with tricalcium silicate (C3S) has allowed the Si from this phase to be effectively labeled during the course of the hydration reaction, thus isolating its contribution to the reaction. A double Q2 signal has been observed in 29SI solid-state MAS NMR spectroscopy of C-S-H gels of relatively low Ca/Si ratio, prepared by hydration or by carbonation of a C3S paste. The origin of the weaker, downfield peak is discussed and tentatively attributed to bridging tetrahedra of a dreierkette silicate chain structure.  相似文献   

14.
Compounds containing rare earths are of increasing technological interest especially because of their unique mechanical, magnetic, electrical, and optical properties. Among them, rare earth oxyorthosilicates are attractive scintillators for γ- and X-ray spectroscopy and detection. However, there are many structural aspects of those compounds that are not clear. In this research, the structure parameters for Sc2Si2O5, X2-polymorph, have been refined from powder X-ray diffraction (XRD) data and the 29Si MAS NMR spectrum is reported for the first time. X2-Sc2SiO5 polymorph was synthesized by the sol–gel method and characterized by XRD and 29Si MAS NMR. The XRD pattern was indexed in a monoclinic unit cell with space group I 2/ c ; the resulting unit cell parameters were a =9.9674(2) Å, b =6.4264(9) Å, c =12.0636(2) Å, and β=103.938(1)°. The 29Si MAS NMR spectrum showed a unique signal at −79.5 ppm, compatible with the unique Si crystallographic site in the unit cell. Finally, the band valence method has been applied to the calculation of a "shift parameter," which is correlated with the NMR chemical shift.  相似文献   

15.
The pore structure ofβ-C2S, C3S, and portland cement pastes was investigated using mercury porosimetry and H2O and N2 adsorption. The β-C2S had more total macro- and mesoporosities than C3S and portland cement pastes of a similar degree of hydration. C3S and portland cement pastes had similar total porosities but differed in the porosity size distribution. In the mesopore range, the various test methods gave different results. These differences are discussed on the basis of the various models proposed for cement paste. It is shown that shrinkage could be correlated with the volume of pores <0.03 μm, but not with total porosity.  相似文献   

16.
The order–disorder of the tetrahedrally coordinated aluminum and silicon atoms in mullite has been investigated by means of 29Si nuclear magnetic resonance (NMR) spectroscopy. Sinter (3/2) and fused (2/1) mullites in the as-received state and reheated at 1750°C, and a reference sillimanite were used for this study. All mullites display similar 29Si NMR spectra: The strongest peak occurs at about −88 ppm, with two subpeaks close to −92 and −96 ppm. The −88 ppm signal is assigned to a sillimanite-type environment with three aluminum oxygen tetrahedra as next nearest neighbors of the silicon oxygen tetrahedra. The two 29Si NMR signals near −92 and −96 ppm are assigned to silicon oxygen tetrahedra surrounded by two aluminum oxygen and one silicon oxygen tetrahedra, and one aluminum oxygen and two silicon oxygen tetrahedra, respectively. 29Si NMR spectra with different short-range-order parameters were simulated by an array of 2 × 10 000 tetrahedral positions by means of an adapted random generator. The comparison between measured and simulated mullite and sillimanite 29Si NMR spectra yields a moderate degree of tetrahedral aluminum–silicon order, with no tendency toward cation demixing.  相似文献   

17.
b29Si and 27Al MAS-NMR were performed on NaOH-activated blast-furnace slag to better characterize the amorphous and poorly crystalline phases which occur in this system. The unreacted glass has a mainly dimeric silicate structure represented by a broad 29Si peak (FWHM = 15 ppm) centered at –74.5 ppm [ Q 1], with aluminum present exclusively in tetrahedral coordination. Upon reaction with 5M NaOH ( w/s = 0.4), three new 29Si peaks with widths of ca. 2 ppm are formed at -78.5 Q 1, –81.4 [ Q 2(1Al)J, and -84.3 [ Q 2]. Relative peak areas indicate a mostly dimeric silicate structure for the tobermorite-like C─S─H layers, with roughly a third of the bridging sites occupied by aluminum, and less than 10% by silicon. In addition to the tetrahedrally coordinated aluminum substituted in the C─S─H structure, 27Al MAS-NMR reveals the presence of aluminum in octahedral sites, which is attributed to the aluminate phase (C,M)4AH13. 29Si results indicate rapid initial consumption of the glass, with roughly a third of the glass reacting within the first day and another third consumed over the following 27 days.  相似文献   

18.
Mesoporous molecular sieves, MCM-41, were synthesized from sepiolite using acid leaching, followed by hydrothermal reconstruction and then calcinations at 540°C for 5 h. The structures and the porosity of MCM-41 were investigated by means of small-angle X-ray diffraction patterns, Brunaer-Emmett-Teller (BET), 29Si MAS NMR, Fourier transform infrared (FTIR), and high resolution transmission electron microscope (HRTEM) methods. The results showed that the hexagonal MCM-41 was formed in an alkaline solution of pH 12, when crystallization was carried out at 100°C for 24 h. The specific surface area, pore diameter, and pore volumes of MCM-41 from sepiolite were 1036 m2/g, 2.98 nm, and 1.06 cm3/g, respectively. 29Si MAS NMR results revealed that amorphous silica decomposed into Si–O chains consisting of two layers of Si atoms, with Q 3 configurations resulting in an increase in the fraction of Q 3 configuration during the crystallization of post-Mg-extraction sepiolite. The IR results illustrated that the complex of ≡≡SiO–CTA+ was formed during the synthesis of MCM-41 from post-Mg-extraction sepiolite.  相似文献   

19.
The chemical and physical properties of C3S, β-C2S, a C3S/C2S blend, and portland cement pastes cured at 25°C were investigated. The H2O specific surface areas of the calcium silicate samples follow a common linear relation when plotted against a CIS ratio. The β-C2S had higher capillary porosity and N2 surface area, resulting from increased mesopore volume at the expense of micropores. All calcium silicate pastes had similar polysilicate content vs time curves, indicating an aging process which is not sensitive to the starting composition of the hydrating calcium silicate. The polysilicate content of portland cement was much lower than that of the corresponding calcium silicate pastes. Strength-capillary porosity relations for the various systems are discussed.  相似文献   

20.
A feasible doping strategy is introduced to synthesize Eu2+-doped α-Si3N4 nanowires coated with a thin BN film. The nanowires were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and a fluorescence spectrophotometer. The Eu2+-doped α-Si3N4 nanowires emitted strong yellow light, which is related to the 4 f 65 d –4 f 7 transition of Eu2+, upon a broad excitation wavelength range between 250 and 450 nm. The obtained nanowires provided a potential candidate for application in optical nanodevices, as well as in white LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号