共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
焊点高度和焊盘尺寸相同情况下,分析焊点形状(桶形、柱形、沙漏形)对BGA封装在板级跌落冲击载荷下可靠性的影响。根据不同焊点形状建立3种3D有限元模型,采用Input-G方法将加速度曲线作为数值模型的载荷输入,对BGA封装件在板级跌落冲击载荷下的可靠性进行分析。结果表明:在跌落冲击过程中,在0.1ms左右PCB板出现最大弯曲变形;焊点形状对BGA封装件在跌落冲击过程中的可靠性有较大的影响;以最大剥离应力作为失效准则对三种焊点进行寿命预测, 沙漏形焊点的平均碰撞寿命值最大,其次是柱形焊点,桶形焊点最小,表明沙漏形焊点在跌落测试中表现出较好的抗跌落碰撞性能。 相似文献
4.
5.
针对实际工况下的微电子封装器件中使用的3种无铅焊点99.3Sn0.7Cu、96.5Sn3.0Ag0.5Cu和96.5Sn3.5Ag的弹塑性力学性能和蠕变行为进行了研究。采用纳米压痕测试技术,对经过时效处理的3种钎焊态无铅焊点99.3Sn0.7Cu、96.5Sn3.0Ag0.5Cu和96.5Sn3.5Ag进行压痕实验,根据接触刚度的连续测量技术(CSM),得到焊点的硬度-位移、弹性模量-位移和载荷-位移曲线。基于实验结果,比较3种焊点的弹塑性性能,并利用压痕功法来给定蠕变应力指数,无铅焊点99.3Sn0.7Cu、96.5Sn3.0Ag0.5Cu和96.5Sn3.5Ag的蠕变应力敏感指数n分别为9.225、14.992和19.231,表明同等条件下产生蠕变量最大的焊点为99.3Sn0.7Cu,其次为96.5Sn3.5Ag,蠕变最小的为96.5Sn3.0Ag0.5Cu。 相似文献
6.
7.
包装件在流通过程中经常受到非高斯随机振动激励的作用,提出了一种包装件在非高斯随机振动激励条件下的时变可靠性的分析方法。结合多项式混沌扩展和Karhunen-Loeve扩展,提出了基于功率谱(或自相关函数)、均值、方差、偏斜度和峭度信息的非高斯随机振动激励的模拟方法;为减小数值分析量,应用拟蒙特卡洛法,在随机变量空间中合理控制变量的分布模拟非高斯随机振动激励,通过四阶龙格库塔法分析,用较少的随机振动模拟样本准确得到了包装件加速度响应的前四阶矩和自相关函数。基于响应的统计信息,应用该研究提出的多项式混沌扩展、Karhunen-Loeve扩展和拟蒙特卡洛分析,获得包装件加速度响应样本,计算包装件的时变可靠性,用原始蒙特卡洛法验证了计算的准确性;该方法在包装件的可靠性分析、包装系统优化等方面具有重要意义。 相似文献
8.
针对JEDEC标准板的局限性,设计了一种圆形PCB,建立了无铅焊点三维有限元模型,运用ABAQUS有限元分析软件对设计板在跌落冲击载荷下的动态特性进行模拟仿真,找到了封装中焊点的薄弱环节,得出焊点的应力状况与PCB板的挠曲变形存在一致的对应关系,验证了PCB板在跌落冲击过程中弯曲振动导致的交变应力是焊点破坏的原因。 相似文献
9.
为了得到悬浮隧道锚索在随机环境激励作用下的响应,建立了悬浮隧道锚索非线性随机振动方程,并在方程中考虑了锚索的垂度效应,随后采用随机等价线性化法对随机激励作用下锚索的振动响应进行了分析。研究结果表明:在零均值高斯白噪声环境激励作用下,锚索的跨中位移和速度均方根响应经过一定时间后将趋于定值,位移和速度的互相关函数趋于零;锚索的阻尼比越大,锚索跨中横向位移均方根响应越小;激励的功率谱密度强度越大,锚索跨中横向位移均方根响应越大;由于水体阻尼力的存在,悬浮隧道锚索的位移和速度均方根响应比空气中锚索的响应大幅减小。 相似文献
10.
研究地面随机微振动对恒星干涉仪关键部件-光学延迟线系统性能的影响。利用美国蓝氏(Lansmont)集团生产的SAVER 3X型三轴振动仪实测地面随机振动信号,以输出的G加速度功率谱密度为激励,运用Workbench有限元分析软件计算该结构系统的随机振动响应;根据抛物镜面节点数据拟合出抛物镜面的Zernike多项式系数、抛物镜刚体平移量和抛物镜面PV和RMS值;将Zernike多项式系数导入光学系统中分析光学延迟线系统光学性能;最后利用ELCOWAT 3000电子自准直仪测量抛物镜刚体平移量,分析实际测量结果和计算理论结果偏差。分析计算结果与实验数据最大偏差7.6%,计算抛物镜面形RMS值为9.6 nm,PV值为46.1 nm,波前差为0.043λ。目前的光学延迟线的地面振动满足光学延迟线系统的稳定性要求。使用动态光学性能标准分析判断微振动对系统光学性能的影响程度,为恒星干涉仪其他子系统优化设计和隔振补偿措施提供参考。 相似文献
11.
De-Shin Liu Chia-Yuan Kuo Chang-Lin Hsu Geng-Shin Shen Yu-Ren Chen Kuo-Cheng Lo 《Materials Science and Engineering: A》2008,494(1-2):196
Using an Instron micro-impact system, this study investigates the failure characteristics of 96.5Sn–3Ag–0.5Cu lead-free solder joints aged at either room temperature or 125 °C, respectively, and then impacted at shear rates of up to 1 m/s. Four types of failure mode are identified, namely M1: interfacial fracture with no residual solder left on the pad; M2: interfacial fracture with residual solder left on the pad; M3: solder ball fracture; and M4: substrate fracture. The experimental results reveal that the solder specimens fail in different failure modes at the same impact speed. The transition from ductile to brittle failure occurs at an impact speed of around 0.5 m/s. At an impact speed of 0.7 (±0.05) m/s or more, over 70% of the specimens fail in the M1 or M2 modes under all of the testing conditions. The isothermal aging process is found to reduce the interfacial strength, and hence the percentage of M3 and M4 mode failures reduces significantly. Overall, the experimental results suggest that the failure mode distribution obtained in high speed impact tests performed at 0.5 m/s provides a feasible component-level quality assurance index. 相似文献
12.
13.
Jong-Woong Kim Young-Chul Lee Sang-Su Ha Seung-Boo Jung 《Journal of Materials Science: Materials in Electronics》2009,20(1):17-24
Failure behaviors of ball grid array (BGA) solder ball joints under various loading conditions of high-speed shear test were investigated with an experimental and non-linear 3-dimensional finite element modeling work. A representative Pb-free solder alloy, Sn-3.0Ag-0.5Cu, was employed in this study. Far greater shear forces were measured by high-speed shear test than by low-speed shear test. The shear force further increased with shear speed mainly due to the high strain-rate sensitivity of the solder alloy. Brittle interfacial fractures can be more easily achieved by high-speed shear test, especially in higher shear speed. This was discussed with the relationship between the strain-rate and work-hardening effect and resulting stress concentration at interfacial regions. Shear force decreased with shear height, and it could be found that excessively high shear heights unfavorably affected the test results leading to unexpectedly high standard deviation values or shear tip sliding from the solder ball surface. 相似文献
14.
15.
电子焊料的无铅化及可靠性问题 总被引:11,自引:0,他引:11
随着环境保护意识的增强,人们更清楚意识到铅的剧毒性给人类健康、生活环境带来的严重危害,全球范围已相继立法规定了使用含铅电子焊料的最后期限,无铅封装,无铅焊料成为了近年来的研究热点问题。本文主要叙述了研究无铅焊料的驱动力,以及无铅焊料须满足的基本要求、常用无铅焊料的优缺点和改进方法,同时介绍了无铅化焊接由于焊料的差异和工艺参数的调整,给焊点可靠性带来的相关问题。 相似文献
16.
为解决Sn-Bi焊料在焊接时容易产生凝固偏析、降低焊点力学性能的问题,采用对焊点进行时效处理的方法来消除Bi的粗化结晶,从而增强焊料的机械性能.研究表明,焊点在125℃时效处理16 h,粗大块状的Bi全部消融,呈颗粒状均匀分布,焊料中的Sn与焊盘上的Cu生成一层厚度约为3μm的Cu6Sn5金属间化合物,使焊点的剪切强度由40 MPa升高到54 MPa.研究还发现,时效处理后的焊点在100℃下长时间放置,微观组织不再发生变化,说明时效处理提高了焊料基体的抗热性能,因此,可以将125℃/16 h的时效处理作为表面贴装生产工艺流程的一道必要工序,使Sn-Bi焊料真正满足实用要求. 相似文献
17.
Siva P.V. Nadimpalli 《Engineering Fracture Mechanics》2010,77(17):3446-3461
Continuous and discrete SAC305 solder joints of different lengths were made between copper bars under standard surface mount (SMT) processing conditions, and then fractured under mode-I loading. The load-displacement behavior corresponding to crack initiation and the subsequent toughening before ultimate failure were recorded and used to calculate the critical strain energy release rates. The fracture of the discrete solder joints was then simulated using finite elements with two different failure criteria: one in terms of the critical strain energy release rate at initiation, Gci, and another based on a cohesive zone model at the crack tip (CZM). Both criteria predicted the fracture loads reasonably well. In addition, the CZM was able to predict accurately the overall load-displacement behavior of the discrete joint specimen. It could also predict the load sharing that occurred between neighboring solder joints as a function of joint pitch and adherend stiffness. This has application in the modeling of the strength of solder joint arrays such as those found in ball grid array packages. 相似文献
18.
K. N. SUBRAMANIAN 《Fatigue & Fracture of Engineering Materials & Structures》2007,30(5):420-431
Solder joints experience thermomechanical fatigue (TMF) as a consequence of thermal stresses that arise from coefficient of thermal expansion (CTE) mismatches between various entities present in the joint under thermal excursions. Sn present in solder joints made with alloys containing significant amounts of Sn, exists in a body centred tetragonal (BCT) structure, under normally realized thermal excursion regimes encountered during service. BCT Sn exhibits significant anisotropic behaviour in its physical and mechanical properties as a consequence of its highly unusual c/a ratio of about 0.5. Such severe anisotropy causes significant stresses at the Sn grain boundaries present within the solder joints during thermal excursions, resulting in damage accumulation within the solder. Stresses resulting from this anisotropy can be much larger than those that can arise from CTE mismatches between entities such as solder/substrate, solder/intermetallics etc. Damage accumulation under TMF progresses in the severely constrained region of the solder/substrate interface, and causes the initiation and propagation of the catastrophic crack. This crack propagates within the solder in a region very close to the solder/substrate interface and results in the TMF failure of the joint. 相似文献
19.
J. CUGNONI J. BOTSIS V. SIVASUBRAMANIAM J. JANCZAK-RUSCH 《Fatigue & Fracture of Engineering Materials & Structures》2007,30(5):387-399
The durability and reliability of lead‐free solder joints depends on a large number of factors, like geometry, processing parameters, microstructure and thermomechanical loads. In this work, the nature and influence of the plastic constraints in the solder due to joining partners have been studied by parametric finite element simulation of solder joints with different dimensions. The apparent hardening due to plastic constraints has been shown to strongly depend on the solder gap to thickness ratio with an inversely proportional evolution. Due to interaction of several parameters, the macroscopic stress–strain constitutive law of lead‐free solder materials should be determined in the most realistic conditions. In order to identify the elasto‐plastic constitutive law of Sn–Ag–Cu solders, a sub‐micron resolution Digital Image Correlation technique has been developed to measure the evolution of strain in solder joints during a tensile test. Experimental results of the stress–strain response of Sn–Ag–Cu solder joints have been determined for several solder gaps. The measured load–displacement curves have been used in an inverse numerical identification procedure to determine the constitutive elasto‐plastic behaviour of the solder material. The effects of geometrical constraints in a real solder joint with heterogeneous stress and strain fields are then studied by comparing the apparent (constrained) and constitutive (non‐constrained) stress–strain relationships. Once the size dependant constraining effects have been removed from the stress–strain relationship, the scale effects can be studied separately by comparing the constitutive elasto‐plastic parameters of joints with a variable thickness. Experimental stress–strain curves (constrained and unconstrained) for Sn–4.0Ag–0.5Cu solder in joints of 0.25–2.4 mm gap are presented and the constraining and the size effects are discussed. 相似文献