首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentrations of C, Fe, Mn, Zn, Cu, Pb and Cd were determined monthly in decomposing roots of Halimione portulacoides, using litterbag experiments, in two salt marshes of the Tagus estuary with different levels of contamination. Although carbon concentrations varied within a narrow interval during the experiment, litter decomposed rapidly in the first month (weight loss between 0.051 and 0.065 g d(-1)). The time variation of metals was examined in terms of Me/C ratios and metal stocks. Ratios of Fe/C and Mn/C and their metal stocks increased in spring, presumably due to the precipitation of oxides in the surface of decomposing roots. Subsequent decrease of Fe/C and Mn/C ratios suggests the use of Fe and Mn oxides, as electron acceptors, in the organic matter oxidation. Zinc, Cu, Pb and Cd ratios to C were, in general, higher than at initial conditions implying that metal that leached out was slower than carbon. However, metal stocks decreased during the experiment indicating that incorporation or sorption of metals in Fe and Mn oxides did not counterbalance the amount of Zn, Pb and Cd released from decomposing litter. An exception was observed for Cu, since stock in the less contaminated marsh (Pancas) increased during the decomposition, indicating that litter was efficient on Cu binding under more oxidising conditions. These results emphasize the importance of litter decomposition and sediment characteristics on metal cycling in salt marshes.  相似文献   

2.
Contamination of metals in household dust remains a concern for human health. However, few studies to date have been conducted on the contribution of both indoor and outdoor environments to the health risks posed by metals. This study was carried out to assess the potential health risks from both indoor and outdoor household dust and the respective contribution to the health risks for children. The results showed that household dusts were heavily polluted by metal(loid)s, which were up to 30 times higher than the relative background level, and were attributed to smelting activity. However, there are other pollution sources in indoor environments, since the I/O ratio values of Pb, Cd, and As were significantly higher than 1. HI values of Pb and As exceeded the threshold of (1) and accounted for approximately 60% and 24% to the HIt, respectively. The HIts of Zn, Cr, Mn, Hg, and Cu were mainly attributable to indoor dust exposure, particularly for Hg (73.44%), indicating non-carcinogenic health risks could be attributed more to the indoor dust exposure. This study highlights the potential risks of metal contamination in household environment, particularly indoor environment, on the health of children who live in the vicinity of smelting activity.  相似文献   

3.
Along with windblown dust, large quantities of pollutants are annually brought out of continental China by the westerlies in winter and spring; thereafter, they are partly subjected to transport by northeastern monsoon winds to Taiwan. To characterize the heavy metal composition differences between long-range transported and local aerosols and to evaluate metal contributions from long-range transported aerosols during the northeastern monsoon season, both PM(10) and PM(2.5) aerosols collected from Taipei, Taiwan from February 2002 to March 2003 were analyzed for three selected heavy metals, namely Pb, Cd and Zn using ICP-MS. Monthly patterns show that Pb concentrations in winter (62 ng/m(3)) were over two times higher than those in the other seasons, which is attributed to long-range transport from areas under development in China. Low Cd/Pb (0.017) and Zn/Pb (1.82) ratios were measured in aerosols collected during the Asian dust period, in which the ambient aerosols consisted predominantly of long-range transported pollutants. By contrast, high Cd/Pb (0.030) and Zn/Pb (3.44) ratios were observed during the summer monsoon season, in which aerosols were dominated by local pollutant emissions. Cd/Pb and Zn/Pb ratios appear to be successfully applied to identify the pollutants originating principally from the long-range transport or from local emissions. In addition, by assuming that a significant fraction of heavy metals associated with coarse airborne dust have settled to the sea prior to reaching Taiwan in spring, a mechanism is suggested to explain why higher anthropogenic metal concentrations occurred in winter than those in dust-rich spring.  相似文献   

4.
Whole soft tissue concentrations of Mn, Co, Ni, Cu, Zn, Pb, Cd and U were measured in two species of freshwater (unionid) bivalves (Hyridella depressa and Velesunio ambiguus) from a minimally polluted site in the Hawkesbury-Nepean River, south-eastern Australia. Although the mean concentrations of metals in the tissue were similar for each bivalve species, their patterns of accumulation were dissimilar. For each metal, positive linear relationships between tissue concentration and shell length (r2 = 0.37-0.77; P < or = 0.001) and tissue dry weight (r2 = 0.29-0.51; P < or = 0.01) were found in H. depressa, but not in V. ambiguus. However, for both species, positive linear relationships were found between the tissue concentration of each divalent metal and Ca tissue concentration (r2 = 0.59-0.97; P < or = 0.001). For both bivalve species, the normalised rates of accumulation of the metals relative to increasing Ca concentration and/or size, were U approximately = Cd > or = Pb > or = Mn > Co > or = Zn > Cu > Ni. The differential rates of accumulation of divalent metals are interpreted as being predominantly governed by their varying loss rates, which are controlled by the differing solubilities (log Ksp values) of the metals in the phosphatic extracellular granules, the demonstrated major sites of metal deposition in the tissue of H. depressa and V. ambiguus. The rates of accumulation of Mn, Co, Zn, Cu and Ni were linearly and inversely related (r2 = 0.91-0.97; P < or = 0.001) to their solubilities as hydrogen phosphates, a finding consistent with the bioaccumulation model previously developed for the alkaline-earth metals. However, for U, Cd and Pb, this linear inverse relationship did not continue to hold, i.e. their rates of accumulation did not increase with decreasing solubility. However, these results are still consistent with the model if U, Cd and Pb are so insoluble in the granules of H. depressa and V. ambiguus over their lifetime (up to approx. 50 years) that there is effectively no loss of these metals, and hence, no differential between their rates of accumulation. The present results reaffirm the use of Ca tissue concentration to predict the tissue concentrations of other divalent metals by explaining up to 94 and 97% of the variability between individual bivalves of H. depressa and V. ambiguus, respectively. The use of Ca tissue concentration to effectively minimise the inherent variability between individuals in their metal tissue improves the ability of an investigator to discern smaller spatial and/or temporal differences in the metal tissue concentrations of these bivalves, and thus to detect metal pollution.  相似文献   

5.
Heavy metal contamination in the street dust due to metal smelting in the industrial district of Huludao city was investigated. Spatial distribution of Hg, Pb, Cd, Zn and Cu in the street dust was elucidated. Meanwhile, noncancer effect and cancer effect of children and adults due to exposure to the street dust were estimated. The maximum Hg, Pb, Cd, Zn and Cu contents in the street dust are 5.212, 3903, 726.2, 79,869, and 1532 mg kg− 1, and respectively 141, 181, 6724, 1257 and 77.4 times as high as the background values in soil. The trends for Hg, Pb, Cd, Zn and Cu are similar with higher concentrations trending Huludao zinc plant (HZP). The exponential equation fits quite well for the variations of Pb, Cd, Zn and Cu contents with distance from the pollution sources, but not for Hg. The biggest contribution to street dust is atmospheric deposition due to metal smelting, but traffic density makes slight contribution to heavy metal contamination. According to the calculation on Hazard Index (HI), in the case of noncancer effect, the ingestion of dust particles of children and adults in Huludao city appears to be the route of exposure to street dust that results in a higher risk for heavy metals, followed by dermal contact. The inhalation of resuspended particles through the mouth and nose is almost negligible. The inhalation of Hg vapour as the fourth exposure pathway to street dust is accounting for the main exposure. Children are experiencing the potential health risk due to HI for Pb larger than safe level (1) and Cd close to 1. Besides, cancer risk of Cd due to inhalation exposure is low.  相似文献   

6.
A preliminary insight into metal cycling within the urban sewer was obtained by determining both the heavy metal concentrations (Cu, Zn, Pb, Cd, Ni, Cr) in sewage and sediments, and the nature of metal-bearing particles using TEM–EDX, SEM–EDX and XRD. Particles collected from tap water, sump-pit deposits, and washbasin siphons, were also examined to trace back the origin of some mineral species. The results show that the total levels in Cu, Pb, Zn, Ni, and Cr in sewage are similar to that reported in the literature, thus suggesting that a time-averaged heavy metal fingerprint of domestic sewage can be defined for most developed cities at the urban catchment scale. Household activities represent the main source of Zn and Pb, the water supply system is a significant source of Cu, and in our case, groundwater infiltration in the sewer system provides a supplementary source of Ni and Cd. Concentrations in heavy metals were much higher in sewer sediments than in sewage suspended solids, the enrichment being due to the preferential settling of metal-bearing particles of high density and/or the precipitation of neoformed mineral phases. TEM and SEM–EDX analyses indicated that suspended solids, biofilms, and sewer sediments contained similar heavy metal-bearing particles including alloys and metal fragments, oxidized metals and sulfides. Copper fragments, metal carbonates (Cu, Zn, Pb), and oxidized soldering materials are released from the erosion of domestic plumbing, whereas the precipitation of sulfides and the sulfurization of metal phases occur primarily within the household connections to the sewer trunk. Close examination of sulfide phases also revealed in most cases a complex growth history recorded in the texture of particles, which likely reflects changes in physicochemical conditions associated with successive resuspension and settling of particles within the sewer system.  相似文献   

7.
Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mo, Ni, Pb, V and Zn were analysed in the moss Abietinella abietina (Hedw.) Fleisch. to estimate atmospheric heavy metal depositions. Samples were taken at five comparable sites within a radius of 25 m four times during the year 2000 (July 3rd, August 3rd, September 7th, October 3rd). The samples were taken by means of a PVC-tube (r=10 cm) and could therefore be related to aboveground growth and aerial deposition. The investigation showed significant differences between the various sampling times for concentrations of all heavy metals in total but not between concentrations of a single metal. For Cu, Hg, Mo, Pb and Zn temporal variation (=variation between the four times of sampling) was larger than spatial variation (=variation of concentrations between sub-samples at a single sampling time). Growth rates of the mosses differed significantly between sampling times, which reflects the low precipitation at the beginning of the season. Biomass increase, dust and precipitation influenced the metal concentrations. The calculation of deposition rates, which takes growth rates into account, showed significant differences between the various sampling times for Al, Cd, Cr, Cu and Ni, which is controversial to the results obtained from concentrations of these elements. Additionally, the calculation of atmospheric deposition rates showed a constant increase of metal depositions throughout the investigated period, which can not be seen by considering the concentrations only.  相似文献   

8.
Daily measurements of water discharges and suspended particulate matter (SPM) concentrations and monthly sampling for trace element analyses (Cd, Zn, Pb and Cu) were conducted from 1999 to 2002 on the Garonne, Dordogne and Isle Rivers, the three main tributaries of the Gironde Estuary, France. Dissolved and particulate Cd, Zn, Pb and Cu concentrations in the Isle River were generally higher than those in the Garonne River, despite the known historical polymetallic pollution affecting the Lot-Garonne River system. Even if the relatively high dissolved metal concentrations in the Isle River may be of importance for the local ecosystem, metal inputs into the estuarine and coastal zones are mainly controlled by fluvial transport via the Garonne River. Characteristic element concentration ratios (e.g., Zn/Pb) in SPM and stream sediments from the Dordogne and Isle Rivers suggest two different metal source areas with distinct geochemical signals. Low Zn/Pb ratios (<8) and low Cu/Pb ratios (<0.8) have been attributed to upstream source zones in the Massif Central, featuring various ore deposits and mining areas. High Zn/Pb ratios were assigned to downstream sources (e.g., vineyards), partly explaining high Zn and Cu concentrations and high Cu/Pb ratios (>0.8) in SPM. Although SPM derived from the upstream parts of the studied watersheds may greatly contribute to the observed fluvial metal transport (up to approximately 80% for Pb), the results suggest that intensive agriculture also considerably influences gross metal (e.g., Zn, Cu) fluxes into the Gironde Estuary. Relative contributions of upstream and downstream source zones may vary from one year to another reflecting hydrological variations and/or reservoir management. Monitoring fluxes and identifying distinct geochemical signals from source areas in heterogeneous watersheds may greatly improve understanding of contaminant transport to the coast.  相似文献   

9.
Concentrations of both essential (Fe, Cu, Zn) and non essential (Cd, Hg and Pb) metals were measured in the digestive gland and mantle of female cephalopods Sepia officinalis captured in two distinct lagoons in Portugal: Aveiro Lagoon, with a history of anthropogenic and industrial pollution, and Formosa Lagoon receiving urban effluents. We provide evidence for the following: (1) the digestive gland is the main target organ for both essential and non essential metals, frequently containing concentrations few orders of magnitude higher as compared to mantle; the sole exception from this was the Hg that is equally distributed in the two tissues; (2) unexpectedly, the higher levels of metals were found in animals captured in the less polluted lagoon, except for Cd whose bioavailability in Aveiro lagoon might be related to industrial sources, while the influence of Cd speciation in local pray composition should not be ruled out (3) size influenced metal concentration in different way: smaller individuals accumulated significantly more Cu, while Hg concentrations showed the opposite trend; (4) Cd is positively correlated to Zn and Cu in digestive gland of specimens collected in spring in Aveiro Lagoon, and no relationship was found in Formosa Lagoon; (5) the molar ratios Cd:Zn and Cd:Cu in digestive gland increased with body weight in specimens from Aveiro area, both ratios becoming particularly higher in older individuals. Metal-specific accumulation patterns in both mantle and digestive gland at the two sites are discussed in the light of their toxicological implications.  相似文献   

10.
Concentrations of Zn, Cu, Cd and Pb and their sub-cellular distributions were determined in composite samples of digestive glands of the common octopus, Octopus vulgaris caught from two areas of the Portuguese coast characterised by contrasting metal contamination. Minor contents of Zn (1%), Cu (2%), Cd (6%) and Pb (7%) were found in the insoluble fraction, consisting of nuclei, mitochondria, lysosomes and microsome operationally separated from the whole digestive gland through a sequential centrifugation. A tendency for linear relationships between metal concentrations in nuclei, mitochondria, lysosomes and whole digestive gland was observed. These relationships suggest that despite low metal content organelles responded to the increasing accumulated metals, which means that detoxifying mechanism in cytosol was incomplete. Poorer correlations between microsome and whole digestive gland did not point to metal toxicity in the analysed compartments. However, the high accumulated Cd indicated that O. vulgaris is an important vehicle of this element to its predators in the coastal environment.  相似文献   

11.
Twenty-seven sites, together with 23 household dust sample sites, representing the home environment, and four public room dust sample sites, representing working environment (mainly offices) have been described in this paper. The latter were examined to obtain an approximate reference to the home environment data. All the samples were collected between May and July 1997 by a vacuum-cleaner method, in the city of Warsaw, Poland. The granulometry of the dusts was determined by their separation into seven fractions in the range 8-500 microm. The concentrations of Cr, Ni, Cu, Zn, Pb, Br and Fe in the samples were investigated in fractions 8-32, 32-63 and 63-125 microm by the EDXRF technique. The results showed higher concentrations of these elements in finer fractions (8-32 microm). The Pb content in the household dusts was found to be unexpectedly low, ranging from 120 microg g(-1) for the 63-125 microm fraction, up to 210 microg g(-1) for the 8-32 microm fraction. Car exhausts could not be determined clearly as the main source of Pb in the indoor household dusts due to the lack of a Pb-Br intercorrelation. In these dusts, only Cr and Zn showed a remarkably high content of 90-100 and 1020-1070 (microg g(-1)), respectively. In the household dusts, strong intercorrelations were present in the three analysed fractions for the metal pairs: Pb-Zn, Pb-Cu, Fe-Cr, and Cu-Cr (weaker). The working environment rooms showed a higher degree of dustiness by 300%, as compared to the dwellings. The dusts collected in the working environment rooms showed slightly higher concentrations of Ni and by 50-100% higher concentrations of: Cu, Zn, Pb, Br than the analysed household dusts.  相似文献   

12.
Toxic metals in street and household dusts.   总被引:3,自引:0,他引:3  
Street and household dusts have been sampled within the Lancaster area (U.K.), and analysed for Pb, Cd, Cr, Co, Cu, Ni and Zn. The concentration of each metal has been determined both as total and extractable metal, the latter referring to metal soluble in a 0.07N hydrochloric acid solution. The results are discussed in relation to the sources of the metals, and possible health hazards to children exposed to the dusts.  相似文献   

13.
In the present investigation, the flocculation of dissolved Cd, Cu, Ni, Pb, Mn and Zn with initial concentrations of 1, 2.5 and 5 mg/L in Tadjan River water during mixing with the Caspian Sea water has been studied in order to determine estuarine capacity to remove dissolved metals in the accidental contamination of the river. The flocculation process was investigated on a series of mixtures with salinities ranging from 0.1 to 11 p.p.t. The flocculation rates were indicative of the nonconservative behaviour of Cd, Cu, Ni, Pb, Mn and Zn during estuarine mixing. The order of the final flocculation rate of dissolved metals at 1, 2.5 and 5 mg/L of initial metal concentrations in the river water is as follows:Cu (99%)>Cd (95%)>Zn (88%)>Mn (85%)>Pb (83%)>Ni (73%), Cu(95.6%)>Pb(92.4%)>Cd (90%)>Zn(88.4%)>Mn (81.6%)>Ni(78.8%) and Cd (100%)>Cu(88%)>Ni (85.2%)>Pb (84%)>Zn (83.2%)>Mn (81.2%), respectively. The results also revealed that removal of dissolved metals is not influenced by pH changes and precipitation processes. The flocculation rates revealed that the overall dissolved metal pollution loads may be reduced to about 70% up to about more than 90% during estuarine mixing of Tadjan River with the Caspian Sea water.  相似文献   

14.
Home sweet home? A case study of household dust contamination in Hong Kong   总被引:7,自引:0,他引:7  
It is well recognized that many heavy metals have chronic effects on humans and as such, they are potential environmental health hazards, particularly to young children (see, for example, Body P, Inglis G, Dolan P, Mulcahy D. Environmental lead: a review. Crit Rev Environ Control 1991;20:299-310). Considerable attention has been paid to the study of metal pollution in city air, roadside dusts and soils. However, there is a lack of concern of the presence of trace metals in house dust in the populous city of Hong Kong, where it has traditionally been assumed that such pollutants are rapidly dispersed by ocean breezes. This research aims at quantifying the concentrations of heavy metals within the home environment in Hong Kong and their relationships with environmental factors. The results of this study seem to suggest that traffic and the age of the building and neighborhood are more important factors than the types of industry and socioeconomic status in affecting household dust contamination. The metal burdens in Kwung Tong, an old area with heavy traffic, are significantly higher than other districts. When a Kruskal-Wallis one-way analysis of variance was performed on the ranked metal concentrations in different housing districts, the Chi-square values are all significant at a probability level of < 0.001. This might be attributable to the fact that there is no highly contaminating industries (such as metal smelters, battery plants and petrochemicals) in Hong Kong. The dust metals may travel from the roads, through the windows and balconies, into the houses, as those homes that do not have their windows opened often had a lower level of contaminants in their house dust (median Cd= 3.6 microg/g; median Cu = 313.2 microg/g; median Pb = 144.6 microg/g; median Mn = 211.6 microg/g; and median Zn = 1,333.7 microg/g). Moreover, those occupants who sweep their floors or dust their furniture on daily bases, or use vacuum cleaners, had a lower level of metals inside their houses. Another finding of interest is that the color of the wall paint used in the house may be another factor influencing the contamination levels.  相似文献   

15.
Concentrations of heavy metals such as Pb, Cd, Cu and Zn have been estimated in air particulates, water and food samples collected from different suburbs in Bombay during 1991–1994. The concentrations of these metals are translated into intake rates through inhalation and ingestion pathways. Results indicate the highest concentration of Pb and Cu are in pulses (green gram), Cd in leafy vegetables (amaranth) and Zn in meat. Root vegetables and fruits contained a lower concentration of these metals. Total intakes of Zn, Cu, Pb and Cd through air, water and food were 10500 μg/day, 1500 μg/day, 30 μg/day and 4.3 μg/day, respectively. Although the major contribution for the daily intake is the ingestion route, eventual uptake in the body stream is contributed through inhalation for Pb (41%) and Cd (16%) and ingestion for Cu (98.8%) and Zn (99.6%). The total intake of these elements through the duplicate diet study is 9500 μg/day for Zn, 1770 μg/day for Cu, 27 μg/day for Pb and 2.5 μg/day for Cd, respectively. The daily intake of these metals by the population of Bombay is well below the recommended dietary values.  相似文献   

16.
Concentrations of Pb, Cd, Hg, Zn, Cu, Cr, Ni, As, V, Al and Fe are reported from soil, humus, moss (Rhacomitrium lanuginosum) and lichen (Cetraria nivalis) sampled at four locations in Greenland. For Al, Fe, Cr and V the levels in soil were highest followed by humus and R. lanuginosum and with the lowest levels in C. nivalis. The same was true for Pb, Cu and Ni but without as great a difference between medias. For Cd and Hg, the lowest levels were found in soil. For Zn and As, the media with highest levels differed between locality. Data were examined by a principal component analysis. Three principal components explained 87% of the total variation. The dominant elements in the first component were Fe, Al, V, Ni, Cr, Cu and Pb. This component is interpreted as a soil dust factor. The concentrations in R. lanuginosum and C. nivalis of these elements are believed to be highly influenced by soil dust. Pb concentrations in moss and lichen may also be influenced by other sources as Pb also had some correlation's with the third component. Zn and Cd and to a lesser extent. As were the dominant elements in the second component. The third component was highly dominated by Hg with a lesser influence of Pb and As, Zn, Cd and Hg concentrations in R. lanuginosum and C. nivalis are believed to be influenced by other sources than soil dust which may be long-range atmospheric transport. In general, both the within locality and the between locality variability in the values of the three components decreased in the order soil, humus, R. lanuginosum and C. nivalis. The lichen C. nivalis is looked at as an indicator with greater potential for monitoring atmospheric deposition of elements than the moss R. lanuginosum.  相似文献   

17.
Muhammad Sadiq  I Alam 《Water research》1997,31(12):3089-3097
Duplicate groundwater samples were collected from 104 monitoring wells (piezometers) from shallow aquifers underneath an industrial city in the Eastern Province of Saudi Arabia. Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Ti, V, Zn, Ca, Mg, K, Na, Cl, SO4, alkalinity, salinity, total dissolved salts, and pH were determined in these samples. Analysis of variance showed significantly (p < 0.05) wide variations in the concentrations of the above parameters. The contour maps of metal concentrations indicated that these variations were related to important landmarks in the study area. The results of correlation analyses suggest that geographical as well as chemical factors may influence metal distribution in the groundwater samples. To investigate the geographical effects, the analytical data were normalized (element/Cl ratios were calculated) for chemical variability. As expected, contour mapping of the ratio data of element/Cl of Na, Ca, Mg, K, SO4, alkalinity, salinity, total dissolved salts, and Sr vary in a relatively small range and did not show a particular geographical trend. The groundwater sample from the industrial-dust area contained higher ratios between concentrations of Cl and Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn. These observations clearly suggest an extraneous contamination source, probably industrial dust, in the area. Another geographical area where metal (As, Cd, Cu, Mo, Ni, Ti,and V)/Cl ratios were found to be large was in the vicinity of an oil-refinery. Groundwater samples collected from the vicinity of a fertilizer plant and green-belt area contained relatively higher ratios of Al, Cd, Cr, Co, and Ni. The results of this study suggest that leachate from the industrial dust, leakage from the oil refinery and fertilizer plant, and drainage of irrigation water are some of the important pollution sources in the industrial city.  相似文献   

18.
Analysis of carbon (delta13C) and nitrogen (delta15N) stable isotopes provides an increasingly important means of understanding the complex trophic structure of macroinvertebrate communities in streams. We coupled a stable isotope approach with a contaminant analysis of six metals (Pb, Ag, Zn, Hg, Cu, As) to trace the accumulation and dilution of metals from an abandoned mine across trophic levels of the benthic community in Ginzan Creek, Japan. The delta15N signature increased with trophic level, with mean increases of 4.70 per thousand from producers to primary consumers and 3.06 per thousand from primary to secondary consumers. Tissue Pb and Ag concentrations were negatively correlated with delta15N, indicating biodilution of both metals through the food web. Although macroinvertebrate taxon body mass was negatively correlated with tissue metal concentration at several sites, it did not increase with trophic level (as delta15N) in any of the sites, suggesting that changes in body mass were not the cause of biodilution. Our findings suggest invertebrates at higher trophic levels may exhibit increasingly efficient excretion of metals. Autotrophic epilithon (mean delta13C= -21.3 per thousand) had a much higher concentration of mined metals than did riparian vegetation (mean delta13C= -29.3 per thousand); nonetheless, a carbon-mixing model indicated that taxa feeding on autochthonous carbon sources did not accumulate more metal than allochthonous feeders. It is likely that the notably high metal concentration of allochthonous FPOM plays an important role in the trophic transfer of metals. Our data suggest the strong potential for stable isotope analysis to enhance our understanding of metal transfer through stream macroinvertebrate food webs.  相似文献   

19.
Heavy metal stabilization in contaminated road-derived sediments   总被引:2,自引:0,他引:2  
There is increasing interest in the stabilization of heavy metals in road-derived sediments (RDS), to enable environmentally responsible reuse applications and circumvent the need for costly landfill disposal. To reduce the mobility of heavy metals (i.e. Cu, Pb and Zn) the effectiveness of amendments using phosphate, compost and fly ash addition were investigated using batch leaching experiments. In general, phosphate amendments of RDS were found to be ineffective at stabilizing heavy metals, despite being used successfully in soils. Phosphate amendment resulted in enhanced concentrations of dissolved organic carbon (DOC), which increased the solubilisation of heavy metals via complexation. Amendment with humified organic matter (compost) successfully stabilized Cu and Pb in high DOC leaching RDS with an optimum loading of 15-20% (w/w). Compost, however, was ineffective at stabilizing Zn. Increasing the pH by amending RDS/compost blends with 2.5-15% (w/w) coal fly ash resulted in the stabilization of Zn, Cu and Pb. However, above a pH of ∼ 7.5 and 8 enhanced leaching of organic matter resulted in an increase in leached Cu and Pb, respectively. Accordingly, the optimum level of fly ash amendment for the RDS/compost blends was estimated to be ca. 10%. Boosted regression trees analysis (BRT) of the data revealed that DOC accounted for 56% and 65% of the Cu and Pb leaching, respectively, whereas pH only accounted for ca. 18% of Cu and Pb leaching. RDS sample characteristics (i.e. metal concentrations, size fractionation and organic matter content) were more important at reconciling the leaching concentrations of copper Cu (27%) than Pb (16%). The most important parameter explaining Zn leaching was pH. Overall, the choice of a suitable stabilization agent/s depends on the composition of RDS with respect to the amount of organic matter present, and the sorption chemistry of the heavy metal of interest.  相似文献   

20.
The availability and bioaccumulation of metals and metalloids, and the geochemical interactions among them, are essential to developing an ecological risk assessment (ERA) framework and determining threshold concentrations for these elements. The purpose of this study was to explore the relationships among total recoverable and reactive metals and metalloid in sediment and their bioaccumulation by chironomids. In the fall of 2004 and 2005, 58 stations located in the three fluvial lakes of the St. Lawrence River and its largest harbour area in Montreal, Canada, were sampled. Nine total recoverable and reactive metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and one metalloid (As) were measured in whole sediment using two extraction methods: HCl/HNO(3) and HCl 1N, respectively. The bioaccumulation of six metals (Cd, Cr, Cu, Ni, Pb and Zn) and As by chironomids was evaluated in a subset of 22 stations. Strong collinearities were observed between some total recoverable or reactive metal concentrations in sediment; two principal clusters, including collinear metals, were obtained. The first one included metals of mainly geological origin (Al, Cr, Fe, Mn, Ni), while the second one included As, Cd, Cu, Pb and Zn, which likely derive mainly from point sources of anthropogenic contamination. Each element also showed strong collinearity between their total recoverable and reactive forms (0.65< or =r < or =0.97). We can conclude that both chemical forms are equivalent for use in statistical models needed to explain biological responses and also in screening risk assessment. However, these relationships are not always proportional. Lower availability percentages were observed for Cd, Cu and Zn in the highly mixed-contaminated area of the Montreal Harbour, even though concentrations in sediment were higher. We observed a significant correlation (0.50< or =r < or =0.56) between concentrations in chironomids and concentrations of both total recoverable and reactive Cr and Pb in sediment. Arsenic was an exception, with accumulation by chironomids being highly related to reactive sediment concentrations. Finally, we observed variable influences of explanatory factors (e.g. sediment grain size, Al, Fe, Mn, S, TOC), depending on which metal or metalloid was being predicted in chironomids. In this context, it is difficult to choose a universal predictive method to explain the bioaccumulation of specific metals, and more research is still needed into normalization procedures that consider a combination of explanatory factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号