首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
光纤导光照明是一种节约环保的照明方式,比起其他照明方式,通过光纤导光进行照明更加舒适、健康.该系统在阳光充足的条件下,直接将太阳光通过光纤导入到室内进行照明.当光线不足时,还可以通过电力进行照明.该照明系统对太阳光能和电能进行了合理的利用和搭配,充分体现了节能环保的理念.  相似文献   

2.
为了提高太阳能的转换效率,普遍采用对太阳进行跟踪以最大限度地获得更多的太阳能.设计了太阳聚焦器和基于光电传感器的太阳跟踪装置,采用日历跟踪与光电跟踪相结合的方式对太阳进行跟踪.设计了一套能够自动使太阳能电池板与太阳光线保持垂直的跟踪系统,实现最大效率地利用太阳能.整个系统结构简单、价格低廉、性能可靠、跟踪精度高.实验表明,该系统的跟踪精度高,跟踪器能够稳定工作,太阳光线垂直照射光斑,达到太阳能热发电所需要的温度,取得了满意的效果.  相似文献   

3.
设计一种根据视日运动规律自动跟踪太阳的系统。采用太阳高度-方位角双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪系统进行水平、俯仰两个自由度的控制,实现对太阳的实时跟踪。该系统适用于各种太阳能采集装置。主要从硬件和软件方面分析太阳自动跟踪系统的设计与仿真实现。系统在实际跟踪过程中运行状况良好,跟踪速度快捷。  相似文献   

4.
设计一种根据视日运动规律自动跟踪太阳的系统。采用太阳高度-方位角双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪系统进行水平、俯仰两个自由度的控制,实现对太阳的实时跟踪。该系统适用于各种太阳能采集装置。主要从硬件和软件方面分析太阳自动跟踪系统的设计与仿真实现。系统在实际跟踪过程中运行状况良好,跟踪速度快捷。  相似文献   

5.
《微型机与应用》2017,(19):103-106
太阳能追踪传感器的性能制约着太阳能跟踪装置的精度和跟踪范围。针对传统光筒式传感器测量范围小、稳定性差等缺点,设计了一种改进型光筒传感器。在室内对传感器的测量范围进行了测试,在室外测试了改进传感器的阈值对跟踪装置的影响。将日梭万年历所计算的太阳高度角和方位角作为参考值。经测试,在12:40~14:40这段时间内,两个传感器的跟踪误差都比较小,传统传感器一天内的平均跟踪误差约为改进传感器的2倍。同时改进传感器很好地解决了光筒高度和测量范围相互制约的问题。  相似文献   

6.
一种新型太阳跟踪器的设计   总被引:3,自引:0,他引:3  
设计了基于位置敏感探测器(PSD)的太阳跟踪器,实现对太阳的自动跟踪。该跟踪器能够适应各种天气,晴天时启动光电跟踪,阴雨天时启动日历跟踪,能够实现方位角在360°范围内,高度角在90°范围内自动跟踪。进行了系统误差分析与实验,实验结果表明:该方法的跟踪精度在±12°,视场角度内为0.1°,各种天气情况下,跟踪器均能稳定地工作,能够达到预期的设计性能。  相似文献   

7.
本文介绍了一种基于硅光电池的太阳自动跟踪系统的设计,该系统结构简单,性能稳定,有效提高了太阳辐射计跟踪太阳的实时性和准确性.  相似文献   

8.
为了提高太阳能利用率,设计了一种基于ARM7的太阳自动跟踪简易控制系统;该系统利用32位ARM嵌入式微处理器LPC2131为控制器,采用光电跟踪和定时跟踪相结合的控制方式;以步进电机作为驱动机构,通过控制跟踪的机构水平、俯仰两个方向运动,实现对太阳的全跟踪;仿真和试验结果表明,该控制系统的跟踪精度误差在1°以内,能够满足太阳自动跟踪的需要,且性能稳定、功能丰富、成本较低,可以为太阳能飞行器的太阳自动跟踪控制工程研制提供参考依据。  相似文献   

9.
基于S3C2440的智能型太阳跟踪系统   总被引:1,自引:0,他引:1  
基于32位ARM微处理器S3C2440设计了太阳自动跟踪系统,该系统采用视日轨迹跟踪和光电跟踪相结合的方式,对太阳进行同步跟踪,以保证获得最大效率的太阳能.同时系统还添加了手动控制模块,以便于系统的调试和维护.结果表明该系统性能稳定,实时性好,能够有效地提高太阳能的利用率.  相似文献   

10.
基于STM32的太阳自动跟踪控制系统的设计   总被引:1,自引:0,他引:1  
针对步进电机在自动跟踪运行过程中失步引起的控制系统跟踪精度降低的缺点,文中设计了以ARM Cortex-M3STM32为微控制器,光电编码器为位置反馈元件的新型数字闭环控制系统;该系统根据太阳的高度和方位信息,结合实时天气状况,以PWM调速方式驱动电机,控制跟踪机构的水平、俯仰两个方向运动,实现对太阳位置的全跟踪;实验结果表明,此系统跟踪精度误差在0.5°以内,较传统的开环控制跟踪系统可以明显地提高系统的跟踪精度,且性能稳定、功能丰富、成本较低。  相似文献   

11.
为了提高太阳能光伏系统的发电效率,设计了一种以单片机与光信号采集模块相结合控制步进电机转动的智能太阳能光伏系统。该系统以MSP-EXP430G2单片机为控制核心,以光敏阵列为信号采集模块,云台为动力模块。利用单片机对采集模块获得的光信号进行处理,通过ULN2003芯片组成的驱动电路驱动电机旋转,从而达到驱动云台上的光伏面板朝向光侧旋转一定角度的目的,最终实现太阳光的自动跟踪。结果表明,该系统运行稳定,可广泛应用于道路两侧、景区、公园等场所。  相似文献   

12.
13.
一种高精度太阳跟踪控制装置研究   总被引:1,自引:0,他引:1  
提高太阳能跟踪系统的跟踪精度及其稳定性是提高太阳能利用效率及降低成本的重要途径.提出了一种以程控和光控相结合的混合控制高精度太阳能跟踪系统.通过对光电传感器进行改进,使其壁有一定的张角同时增加合适宽度的遮光板用使输出模拟量放大,以提高其稳定性和入射光偏差灵敏度,其中入射光最大偏差为0.105 mm.实验结果表明:该跟踪装置通过太阳光线垂直照射在接收器,从而有效的提高系统的跟踪精度且能够实现全天候自动跟踪.通过误差分析法将实测数据与理论数据进行计算得出跟踪绝对误差在±0.1°以内,比现有的跟踪控制装置更为精确,表明该跟踪控制装置满足稳定可靠、精度高、抗干扰能力强.  相似文献   

14.
阳光跟踪系统能够使各种太阳能应用装置采光面始终保持与阳光照射方向垂直,使其最大化地接收太阳能.据实验,在太阳能发电中,相同条件下,采用自动跟踪发电设备要比固定发电设备的发电量提高35%左右.随着太阳能技术的不断改进和提高,在一些新型的聚光太阳能装置上,例如阳光光纤导入系统、聚光太阳能光伏系统、聚光热太阳能发电、阳光辐射量采集统计装置等需要一种高精度、稳定的跟踪系统.介绍一种利用CCD图像传感器对天空太阳日盘进行识别的高精度阳光跟踪器.  相似文献   

15.
任伟  宋涛 《传感器世界》2010,16(5):22-23,10
该设计采用低成本感光阵列,结合电机智能控制系统,实现太阳能电池板受光角度随季节、早晚而自动调整。系统运用低功耗休眠电路,大大减低了太阳能电池板无功时的整体系统功耗。整体电路设计合理,成本低,稳定可靠。  相似文献   

16.
高岩  卢小芬  郭新华 《微型机与应用》2013,32(13):90-93,100
在详细分析太阳自动跟踪方式的基础上,设计了一个由多台太阳跟踪器组成的太阳自动跟踪系统,该跟踪器采用混合式单轴跟踪方式,无刷直流电机驱动。系统经小规模试安装后,可以精确跟踪太阳,达到大幅度提高太阳能利用率的目的。  相似文献   

17.
为使物联网传感器节点长期用于生态环境监测,设计了一种风光混合微能量变换系统提供节点持续电能.设计了光源自动跟踪和最大功率跟踪两种控制电路,最大程度地进行光伏能量转换;设计低输入电压的能力的升压电路以提高在低风速情况的能量采集.分析了风光混合系统电源管理的工作方式,理论推导传感节点和双轴电机工作所需能量管理的理论条件.实验测试结果表明:研究的混合微能量变换系统能够精确检测光照强度,能采集光能和风能并实时充电存储,节点可以持续工作,采集数据并实时远距离无线传输,能够满足林业生态环境的远程监测功能要求.  相似文献   

18.
针对太阳能利用率不高的现状,设计了以MSP430F169单片机为核心的智能型太阳能自动追踪系统,采用基于阈值滤波的最大功率点追踪控制算法,提高了系统太阳能板追踪太阳的灵敏度,采用风速监测模块,增强了系统的稳定性。结果表明,相比固定电池板,系统吸收太阳能的转换效率提高了约95%,对提高太阳能的吸收效率,合理地利用太阳能具有重要的研究价值。  相似文献   

19.
光导纤维如今已广泛应用于现代社会的各个领域,它不但适用于通信、医学、传感器等科学应用领域,缤纷的都市空间更是展现光纤之美的重要舞台。本文主要介绍了西方发达国家在城市建筑照明、室内照明、景观与公共艺术照明等诸多城市空间领域光导纤维的应用情况,旨在为丰富我国的城市空间提供一些有益的参考,并由此倡导光纤照明这样一种绿色、安全、时尚的城市照明方式。进而为其将来更好地服务于现代社会,提升城市生活品质做好理论与实践两方面的充分准备。  相似文献   

20.
针对目前室内传统照明存在电能浪费、布线麻烦、系统安装成本高等问题,设计一种智能LED照明控制系统。系统采用ZigBee技术进行无线通信,LED驱动电源选用TNY268P开关电源芯片,主控模块负责整个系统的协调工作,红外采集模块和光照度采集模块负责向主控模块发送采集数据。主控模块可以通过手动模式或自动模式无线通信远程的方式调节LED电流,达到调光及恒照度目的。本系统适用不同场合的LED智能照明,实现恒照度、区域照明、定时控制、人体感应自动照明、亮度调节等功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号