共查询到18条相似文献,搜索用时 78 毫秒
1.
基于粒计算的K-medoids聚类算法 总被引:1,自引:0,他引:1
传统K-medoids聚类算法的聚类结果随初始中心点不同而波动,且计算复杂度较高不适于处理大规模数据集;快速K-medoids聚类算法通过选择合适的初始聚类中心改进了传统K-medoids聚类算法,但是快速K-medoids聚类算法的初始聚类中心有可能位于同一类簇。为克服传统K-medoids聚类算法和快速K-medoids聚类算法的缺陷,提出一种基于粒计算的K-medoids聚类算法。算法引入粒度概念,定义新的样本相似度函数,基于等价关系产生粒子,根据粒子包含样本多少定义粒子密度,选择密度较大的前K个粒子的中心样本点作为K-medoids聚类算法的初始聚类中心,实现K-medoids聚类。UCI机器学习数据库数据集以及随机生成的人工模拟数据集实验测试,证明了基于粒计算的K-medoids聚类算法能得到更好的初始聚类中心,聚类准确率和聚类误差平方和优于传统K-medoids和快速K-medoids聚类算法,具有更稳定的聚类结果,且适用于大规模数据集。 相似文献
2.
3.
一种结合人工蜂群和K-均值的混合聚类算法 总被引:1,自引:1,他引:1
传统的K-均值聚类算法虽然收敛速度快,但由于过度依赖初始聚类中心,算法的鲁棒性较差。为此,提出了一种改进人工蜂群算法与K-均值相结合的混合聚类方法,将改进人工蜂群算法能调节全局寻优能力与局部寻优能力的优点与K-均值算法收敛速度快的优点相结合,来提高算法的鲁棒性。实验表明,该算法不仅克服了传统K-均值聚类算法稳定性差的缺点,而且聚类效果也有了明显改善。 相似文献
4.
针对K均值聚类(KMC)算法全局搜索能力差、初始聚类中心选择敏感,以及原始人工蜂群(ABC)算法的初始化随机性、易早熟、后期收敛速度慢等问题,提出了一种改进人工蜂群算法(IABC)。该算法利用最大最小距离积方法初始化蜂群,构造出适应KMC算法的适应度函数以及一种基于全局引导的位置更新公式以提高迭代寻优过程的效率。将改进的人工蜂群算法与KMC算法结合提出IABC-Kmeans算法以改善聚类性能。通过Sphere、Rastrigin、Rosenbrock和Griewank四个标准测试函数和UCI标准数据集上进行测试的仿真实验表明,IABC算法收敛速度快,克服了原始算法易陷入局部最优解的缺点;IABC-Kmeans算法则具有更好的聚类质量和综合性能。 相似文献
5.
6.
针对传统K-medoids聚类算法对初始值敏感、中心点随机选择以及聚类精度不够高等缺点,在粒计算有效初始化的基础上,提出中心点宽度优先搜索策略. 首先,利用粒计算初始化获取K个有效粒子,遴选该K个粒子所对应的K个中心点作为K个初始中心点;然后,根据对象间的相似性分别对K个粒子中的对象建立以中心点为根节点的相似对象二叉树,通过宽度优先搜索遍历二叉树迭代出最优中心点, 同时采用簇间距离和簇内距离优化准则函数. 实验结果表明,所提算法在UCI中Iris和Wine标准数据集中测试,在有效缩短迭代次数的同时保证了算法聚类准确率. 相似文献
7.
针对大数据聚类算法计算效率与聚类性能较低的问题,提出了一种基于改进人工蜂群算法与MapReduce的大数据聚类算法。将灰狼优化算法与人工蜂群算法结合,同时提高人工蜂群算法的搜索能力与开发能力,该策略能够有效地提高聚类处理的性能;采用混沌映射与反向学习作为ABC种群的初始化策略,提高搜索的解质量;将聚类算法基于Hadoop的MapReduce编程模型实现,通过最小化类内距离的平方和实现对大数据的聚类处理。实验结果表明,该算法有效地提高了大数据集的聚类质量,同时加快了聚类速度。 相似文献
8.
模糊C-均值聚类算法在数据挖掘领域有着广泛的使用背景,而对初始点的敏感和较差的搜索能力,限制了算法的进一步推广应用。人工蜂群算法具有对初始点不敏感、适应能力强和搜索能力强等优点,并且针对人工蜂群算法对单峰问题收敛速度慢、多峰问题容易陷入局部最优等问题,通过引入差分进化算法中变异和交叉思想,改善蜂群算法的收敛速度,平衡局部搜索和全局搜索能力。然后将改进的人工蜂群算法和模糊C-均值聚类算法结合得到基于改进人工蜂群的模糊C-均值聚类算法,并在多个国际标准数据集上进行验证,实验结果表明此算法在多个衡量指标上取得了明显的改进。 相似文献
9.
聚类在数据挖掘技术中起着至关重要的作用。传统的聚类算法都是硬聚类算法,即对象要么属于一个类,要么不属于一个类,在处理不确定数据时,强制划分会带来决策错误。三支k-means聚类算法可以对边界不确定数据进行更加合理的分类,但仍然存在对初始聚类中心敏感的问题。为解决这一问题,将人工蜂群算法与三支k-means聚类算法相结合,提出了一种基于人工蜂群的三支k-means聚类算法。通过定义类内聚集度函数和类间离散度函数来构造蜜源的适应度函数,引导蜂群向高质量的蜜源进行全局搜索。利用蜂群之间不同角色的相互协作与互换,对数据集进行多次迭代聚类,找到最优的蜜源位置,作为初始聚类中心,并在此基础上交替迭代聚类。实验证明,该方法对聚类结果的性能指标有所提高。在UCI数据集上的实验验证了该算法的有效性。 相似文献
10.
为了改善K均值聚类算法对初始聚类中心敏感和易于陷入局部最优的不足,提出人工蜂群算法和K均值聚类算法相结合的想法,即基于人工蜂群优化的K均值聚类算法。通过全局寻优能力强的人工蜂群算法初始化K均值的聚类中心并优化聚类中心的位置,从而帮助K均值跳出局部极值,优化聚类效果。将混合聚类算法用Iris、Red Wine和New Red Wine数据集做聚类测试,结果表明该算法既克服了原始K均值聚类算法容易受初始聚类中心影响和不稳定的缺点,又具有良好的性能和聚类效果。 相似文献
11.
针对人工蜂群算法迭代后期容易陷入局部的缺点,将猴群算法的爬过程引入到采蜜蜂采蜜的阶段,加强局部搜索。通过仿真实验测试,与参考文献中的改进算法进行比较,可以得到提出的改进算法比原人工蜂群算法及现有的部分改进算法性能优良,能够在一定程度上跳出局部最优,得到的近似解也更加接近测试函数理论最优解。 相似文献
12.
针对人工蜂群算法在求解函数优化问题时存在的探索能力强,而开发能力不足和收敛性能差的问题,本文提出一种基于分段搜索策略的自适应差分进化人工蜂群算法。该算法将改进后的差分进化算法中的变异操作引入到观察蜂的局部搜索策略中,让观察蜂在雇佣蜂逐维变异后的当前最优解周围进行局部搜索,并采用分段搜索的方式更新蜜源,以提高其局部搜索能力。仿真实验结果表明,与基本人工蜂群算法相比,改进后的算法有效地平衡了算法的探索能力和开发能力,并提高了算法的寻优精度和收敛速度。 相似文献
13.
14.
Zhi-gang Su Pei-hong WangJiong Shen Yi-guo LiYu-fei Zhang En-jun Hu 《Applied Soft Computing》2012,12(11):3421-3441
Swarm intelligence based automatic fuzzy clustering is recently an important and interesting unsupervised learning problem. In this article, an automatic fuzzy clustering technique is proposed based on a novel version of Artificial Bee Colony (ABC) algorithm. 相似文献
15.
K-medoids算法作为聚类算法的一种,不易受极端数据的影响,适应性广泛,但是K-medoids聚类算法的精确度不稳定,平均准确率较低,用于实际的聚类分析时效果较差.ACO是一种仿生优化算法,其具有很强的健壮性,容易与其他方法相结合,求解效率高等特点.在K-medoids聚类算法的基础上,借鉴ACO算法的优点,提出了一种新的聚类算法,它提高了聚类的准确率,算法的稳定性也比较高.通过仿真实验,验证了算法的可行性和先进性. 相似文献
16.
人工蜂群算法(ABC)是一种基于蜜蜂行为的优化算法。基于Boltzmann选择机制提出了一种改进的人工蜂群算法(BABC)用来优化多变量函数。BABC算法使初始群体均匀化;采用Boltzmann选择机制来代替轮盘赌以防止算法过早收敛。经过实验证明,该算法具有全局搜索能力好,收敛速度快,参数设置少等优点。 相似文献
17.
蛋白质相互作用网络的蜂群信息流聚类模型与算法 总被引:1,自引:0,他引:1
蛋白质相互作用网络的聚类算法研究是充分理解分子的结构、功能及识别蛋白质的功能模块的重要方法.很多传统聚类算法对于蛋白质相互作用网络聚类效果不佳.功能流模拟算法是一种新型聚类算法,但该算法没有考虑到距离的作用效果并且需要人为地设置合并阈值,带有主观性.文中提出了一种新颖的基于蜂群优化机理的信息流聚类模型与算法.该方法中,数据预处理采用结点网络综合特征值的排序来初始化聚类中心,将蜂群算法的蜜源位置对应于其聚类中心,蜜源的收益度大小对应于模块间的相似度,采蜜蜂结点的所有邻接点按照结点网络综合特征值的降序排列,作为侦察蜂的搜索邻域.采用正确率、查全率等指标对聚类效果做出客观评价,并对算法的一些关键参数进行仿真、对比与分析.结果表明新算法不仅克服了原功能流模拟算法的缺点,且其正确率和查全率的几何平均值最高,能够有效地识别蛋白质功能模块. 相似文献