首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Water research》1986,20(9):1197-1199
A method is presented for the determination of total phosphorus dissolved in seawater by magnesium nitrate oxidation of the organic component concomitant with depolymerization of polyphosphate residues, followed by the standard molybdate colorimetric determination of the liberated orthophosphate. This method gave 93–100% recovery of phosphorus from inorganic metaphosphate and polyphosphate, phosphate esters and anhydrides, nucleotide-P, phospholipid and phosphonates. It is shown to be superior to the perchlorate-oxidation or high-intensity u.v.-irradiation methods for quantitative P recovery from phosphonates and polyphosphates, while proving equal in P recovery to the autoclave-requiring persulfate-oxidation method.  相似文献   

2.
This study was conducted to determine the role of the oxidation competition value (Ω) in an ozone disinfection process and to evaluate the potential bacterial growth capacity of water as a result of ozonation. For water from five different sources, good correlations were obtained between TOC, Ω and three measures of microbial inactivation (90% kill, 50% kill and breakpoint). Initial death rates were related to the quantity of ozone applied. Application of ozone to Delaware River water appeared to enhance growth of P. aeruginosa. The results are interpreted via a mechanistic approach related to ozone chemistry.  相似文献   

3.
We report the formation of bromoform in TiO2 suspensions (P25) under simulated solar UV irradiation at different concentrations of photocatalyst (0.5-1.5 g L−1) as well as initial concentrations of bromide ions (1-3 mg L−1) and 2,4-dihydroxybenzoic acid (2-10 mg L−1). The extent of bromoform formation (3-17 μg L−1) was most strongly affected by the amount of photocatalyst present and by the initial bromide concentration, increasing either of which leads to increased bromoform formation. Important interaction effects were observed when simultaneously increasing the concentrations of TiO2 and bromide as well as of bromide and DHBA. The time it takes for bromoform to appear in measurable concentrations in the irradiated TiO2 suspensions was between 10 and 90 min and most strongly depended on the initial concentration of dissolved organic carbon present in the suspensions, along with the amount of photocatalyst, also in interaction with the initial bromide concentration.  相似文献   

4.
Particulate organic carbon (POC) in waters was determined by chemical oxidation method which has been widely used for the determination of total organic carbon and/or dissolved organic carbon. In this method, a water sample was filtered through a filter paper and the paper was placed in a glass ampoule, followed by the determination of POC with a total carbon analyzer. This paper discussed the problems of carbon contamination dissolving from filter papers. The selection of filter papers, the carbon blank values resulting from the papers and the pretreatment of the papers were studied. It became clear that the glass-fiber filter paper pretreated at 500°C for 8 h was superior to the filter papers treated under other conditions. The POC's in waters were determined by this method, and the results agreed well with those obtained by an ordinary dry combustion method.  相似文献   

5.
Reverse osmosis (RO) concentrate samples were obtained from a RO-membrane system that uses effluents of wastewater treatment plants (WWTP) as feed water for the production of drinking water. A number of different pharmaceuticals (e.g. antibiotics, contrast media, beta blockers) were found in the WWTP effluent as well as in the RO-concentrate. Overall, a concentration factor (feed:concentrate) of approximately 3-4 was measured. Beta blockers (acebutolol, atenolol, bisoprolol, celiprolol, metoprolol, propranolol, timolol) were found in the range of low ng/L to low microg/L. Because metoprolol and propranolol are classified as potentially toxic to aquatic organisms and all beta blocker molecules have moieties, which are reactive towards ozone (amine groups, activated aromatic rings), it was tested whether ozonation can be applied for their mitigation. Rate constants for the reaction of acebutolol, atenolol, metoprolol and propranolol with ozone and OH radicals were determined. At pH 7 acebutolol, atenolol and metoprolol react with ozone with an apparent second-order rate constant ( [Formula: see text] ) of about 2,000 M(-1)s(-1), whereas propranolol reacts with approximately 10(5)M(-1)s(-1). The rate constants for the reaction of the selected compounds with OH radicals were determined to be 0.5-1.0 x 10(10)M(-1)s(-1). Experiments with RO concentrate showed that an ozone dose of only 5mg/L resulted in a quantitative removal of propranolol in 0.8s and 10mg O(3)/L oxidized 70% of metoprolol in only 1.2s. Tests with chlorinated and non-chlorinated WWTP effluent showed an increase of ozone stability but a decrease of hydroxyl radical exposure in the samples after chlorination. This may shift the oxidation processes towards direct ozone reactions and favor the degradation of compounds with high [Formula: see text].  相似文献   

6.
We report the irradiation of TiO(2) suspensions containing Br(-) and dissolved organic carbon (DOC). In the absence of DOC, we found no evidence for the formation of BrO(3)(-) upon irradiation of 1gL(-1) P25 suspensions with UV light for initial Br(-) concentrations up to 10mgL(-1). In the presence of DOC (Lake Hohloh, Germany and salicylic acid), we found no evidence for the formation of either BrO(3)(-) or trihalomethanes (THMs). However, small amounts of adsorbable organic halogen (AOX) were formed at high bromide concentrations (3mgL(-1)). When irradiating P25 suspensions containing bromide and 2,4-dihydroxybenzoic acid (DHBA, high bromoform formation potential), we observed the formation of significant amounts of bromoform (up to 10microgL(-1)). Bromoform appeared only after the DHBA had been degraded.  相似文献   

7.
von Gunten U 《Water research》2003,37(7):1469-1487
Ozone is an excellent disinfectant and can even be used to inactivate microorganisms such as protozoa which are very resistant to conventional disinfectants. Proper rate constants for the inactivation of microorganisms are only available for six species (E. coli, Bacillus subtilis spores, Rotavirus, Giardia lamblia cysts, Giardia muris cysts, Cryptosporidium parvum oocysts). The apparent activation energy for the inactivation of bacteria is in the same order as most chemical reactions (35-50 kJ mol(-1)), whereas it is much higher for the inactivation of protozoa (80 kJ mol(-1)). This requires significantly higher ozone exposures at low temperatures to get a similar inactivation for protozoa. Even for the inactivation of resistant microorganisms, OH radicals only play a minor role. Numerous organic and inorganic ozonation disinfection/oxidation by-products have been identified. The by-product of main concern is bromate, which is formed in bromide-containing waters. A low drinking water standard of 10 microg l(-1) has been set for bromate. Therefore, disinfection and oxidation processes have to be evaluated to fulfil these criteria. In certain cases, when bromide concentrations are above about 50 microg l(-1), it may be necessary to use control measures to lower bromate formation (lowering of pH, ammonia addition). Iodate is the main by-product formed during ozonation of iodide-containing waters. The reactions involved are direct ozone oxidations. Iodate is considered non-problematic because it is transformed back to iodide endogenically. Chloride cannot be oxidized during ozonation processes under drinking water conditions. Chlorate is only formed if a preoxidation by chlorine and/or chlorine dioxide has occurred.  相似文献   

8.
S. Dogruel  Z. Kartal  D. Orhon 《Water research》2009,43(16):3974-4166
The study evaluated the effect of Fenton's oxidation on the particle size distribution (PSD) of significant parameters reflecting the organic carbon content of olive oil mill wastewater (OMW). The organic carbon content of the studied OMW was characterized by a COD level of around 40,000 mg/L, with 13,500 mg/L of TOC and 1670 mg/L of total phenols. The corresponding antioxidant activity (AOA) was determined as 33,400 mg/L. PSD of the selected organic carbon parameters was investigated using a sequential filtration/ultrafiltration procedure. COD fractionation based on PSD revealed two major components, a soluble fraction below 2 nm and a particulate fraction above 1600 nm representing 49% and 20% of the total COD, respectively. The remaining COD was distributed in the colloidal and supracolloidal zones. The PSD of TOC, total phenols and AOA exhibited similar profiles with peaks at the two ends of the studied size range. Overall COD removals achieved via Fenton's oxidation both at pH = 3.0 and pH = 4.6 (the original pH of the OMW) remained in the range of 40-50%. As anticipated, the effect of Fenton's treatment was more pronounced in the soluble size range. Fenton's oxidation at pH = 3.0 resulted in 46% and 63% removals for total phenols and AOA, respectively. The results obtained indicated that Fenton's process could only be useful as an alternative preliminary treatment option of the required full treatment scheme that could involve a sequence of filtration, oxidation and/or biological treatment steps.  相似文献   

9.
Interest has grown in the use of reactive minerals for natural and engineered transformation of ground water contaminants. This study investigated how the structural properties of 10 model compounds representing natural organic matter (NOM) influenced their adsorption to chloride green rust (GR-Cl), and how this adsorption affected rate constants for transformation of carbon tetrachloride (CT) by GR-Cl. The affinity of benzoic acid, phthalic acid, trimesic acid, pyromellitic acid, and mellitic acid for the GR-Cl surface generally increased in the order of increasing number of carboxylic acid functional groups, increasing acidity of these functional groups, and increasing charge density. For NOM model compounds that had phenolic functional groups (p-hydroxybenzoic acid, α-resorcylic acid, and caffeic acid), the affinity for the GR-Cl surface was greatest for caffeic acid, which had two adjacent phenolic functional groups. Some NOM model compounds had experimentally determined Langmuir maximum adsorption capacities (qmax−Langmuir) greater than those calculated based on external surface area measurements and the size of the NOM model compound, suggesting adsorption to internal as well as external sites at the GR-Cl surface for these compounds. Rate constants for CT transformation by GR-Cl generally decreased as the affinity of the NOM model compounds (estimated by Langmuir K values) increased, but there was no statistically significant correlation between Langmuir parameters (i.e., K and qmax−Langmuir) and rate constants, perhaps due to significant adsorption of some NOM model compounds to sites that were not accessible to CT, such as interlayer sites. Unlike the other NOM model compounds, caffeic acid, which adsorbed to a significant extent to the GR-Cl surface, increased the rate constant for CT transformation. The influence of NOM on rate constants for CT transformation by green rusts should be considered in ground water remediation planning.  相似文献   

10.
Five oxidants, ozone, chlorine dioxide, chlorine, permanganate, and ferrate were studied with regard to the formation of assimilable organic carbon (AOC) and oxalate in absence and presence of cyanobacteria in lake water matrices. Ozone and ferrate formed significant amounts of AOC, i.e. more than 100 μg/L AOC were formed with 4.6 mg/L ozone and ferrate in water with 3.8 mg/L dissolved organic carbon. In the same water samples chlorine dioxide, chlorine, and permanganate produced no or only limited AOC. When cyanobacterial cells (Aphanizomenon gracile) were added to the water, an AOC increase was detected with ozone, permanganate, and ferrate, probably due to cell lysis. This was confirmed by the increase of extracellular geosmin, a substance found in the selected cyanobacterial cells. AOC formation by chlorine and chlorine dioxide was not affected by the presence of the cells. The formation of oxalate upon oxidation was found to be a linear function of the oxidant consumption for all five oxidants. The following molar yields were measured in three different water matrices based on oxidant consumed: 2.4-4.4% for ozone, 1.0-2.8% for chlorine dioxide and chlorine, 1.1-1.2% for ferrate, and 11-16% for permanganate. Furthermore, oxalate was formed in similar concentrations as trihalomethanes during chlorination (yield ∼ 1% based on chlorine consumed). Oxalate formation kinetics and stoichiometry did not correspond to the AOC formation. Therefore, oxalate cannot be used as a surrogate for AOC formation during oxidative water treatment.  相似文献   

11.
More stringent legislation on dissolved organic matter (DOM) urges the drinking water industry to improve in DOM removal, especially when applied to water with high dissolved organic carbon (DOC) contents and low turbidity. To improve conventional processes currently used in drinking water treatment plants (DWTPs), the performances of a hybrid membrane bioreactor containing fluidised activated carbon were investigated at the DWTP of Rennes. Preliminary results showed that the residual DOC was the major part of the non-biodegradable fraction. In order to increase the global efficiency, an upstream oxidation step was added to the process. Ozone was chosen to break large molecules and increase their biodegradability. The first step consisted of carrying out lab-scale experiments in order to optimise the necessary ozone dose by measuring the process yield, in terms of biodegradable dissolved organic carbon (BDOC). Secondly, activated carbon adsorption of the DOC present in ozonated water was quantified. The whole process was tested in a pilot unit under field conditions at the DWTP of Rennes (France). Lab-scale experiments confirmed that ozonation increases the BDOC fraction, reduces the aromaticity of the DOC and produces small size organic compounds. Adsorption tests led to the conclusion that activated carbon unexpectedly removes BDOC first. Finally, the pilot unit results revealed an additional BDOC removal (from 0.10 to 0.15 mg L−1) of dissolved organic carbon from the raw water considered.  相似文献   

12.
Concerns about endocrine disrupting compounds in sewage treatment plant (STP) effluents give rise to the implementation of advanced treatment steps for the elimination of trace organic contaminants. The present study investigated the effects of ozonation (O3) and activated carbon treatment (AC) on endocrine activities [estrogenicity, anti-estrogenicity, androgenicity, anti-androgenicity, aryl-hydrocarbon receptor (AhR) agonistic activity] with yeast-based bioassays. To evaluate the removal of non-specific toxicity, a cytotoxicity assay using a rat cell line was applied. Wastewater (WW) was sampled at two STPs after conventional activated sludge treatment following the secondary clarifier (SC) and after subsequent advanced treatments: O3, O3 + sand filtration (O3-SF), and AC. Conventional treatment reduced estrogenicity, androgenicity, and AhR agonistic activity by 78-99% compared to the untreated influent WW. Anti-androgenicity and anti-estrogenicity were not detectable in the influent but appeared in SC, possibly due to the more effective removal of respective agonists during conventional treatment. Endocrine activities after SC ranged from 2.0 to 2.8 ng/L estradiol equivalents (estrogenicity), from 4 to 22 μg/L 4-hydroxytamoxifen equivalents (anti-estrogenicity), from 1.9 to 2.0 ng/L testosterone equivalents (androgenicity), from 302 to 614 μg/L flutamide equivalents (anti-androgenicity), and from 387 to 741 ng/L β-naphthoflavone equivalents (AhR agonistic activity). In particular, estrogenicity and anti-androgenicity occurred in environmentally relevant concentrations. O3 and AC further reduced endocrine activities effectively (estrogenicity: 77-99%, anti-androgenicity: 63-96%, AhR agonistic activity: 79-82%). The cytotoxicity assay exhibited a 32% removal of non-specific toxicity after O3 compared to SC. O3 and sand filtration reduced cytotoxic effects by 49%, indicating that sand filtration contributes to the removal of toxicants. AC was the most effective technology for cytotoxicity removal (61%). Sample evaporation reduced cytotoxic effects by 52 (AC) to 73% (O3), demonstrating that volatile substances contribute considerably to toxic effects, particularly after O3. These results confirm an effective removal or transformation of toxicants with receptor-mediated mode of action and non-specific toxicants during O3 and AC. However, due to the limited extractability, polar ozonation by-products were neglected for toxicity analysis, and hence non-specific toxicity after O3 is underestimated.  相似文献   

13.
利用二氯化铁高温氧化反应,对普通灰白色花岗石进行了改色研究。考察了花岗石改色的主要影响因素,确定了较理想的工艺条件,并对改色后的花岗后时行了性能测试。测试结果表明,本方法改色的花岗石耐酸、耐碱、耐有机溶剂、耐沸水、耐紫外光。  相似文献   

14.
This study investigates the fate of trace organic chemicals (TrOCs) in three full-scale reclamation plants using ozonation followed by biological activated carbon (BAC) filtration to treat wastewater treatment plant effluents. Chemical analysis was used to quantify a wide range of TrOCs and combined with bioanalytical tools to assess non-specific toxicity (Microtox assay) and estrogenicity (E-SCREEN assay). Limited dissolved organic carbon (DOC) removal (<10%) was observed in the ozonation stages showing that oxidation leads to the formation of transformation products rather than mineralization. The quantified TrOCs were removed to a degree highly dependent on the compounds’ structures and the specific ozone dose (mgO3 mgDOC−1). Non-specific toxicity was reduced by 31-39%, demonstrating that the mixture of remaining parent compounds and their transformation products as well as newly formed oxidation by-products had an overall lower toxic potential than the mixture of parent compounds. Estrogenicity was reduced by more than 87% indicating that the transformation products of the estrogenic chemicals lost their specific toxicity potential. The subsequent BAC filtration removed between 20 and 50% of the DOC depending on the plant configuration, likely due to biodegradation of organic matter. The filtration was also able to reduce the concentrations of most of the remaining TrOCs by up to 99%, and reduce non-specific toxicity by 33-54%. Overall, the combination of ozonation and BAC filtration can achieve removals of 50% for DOC and more than 90% for a wide range of TrOCs as well as a reduction of 70% of non-specific toxicity and more than 95% of estrogenicity. This process combination is therefore suggested as an effective barrier to reduce the discharge of TrOCs into the environment or their presence in water recycling schemes.  相似文献   

15.
The objective of this study was to evaluate the necessity of measuring both assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC) as indicators of bacterial regrowth potential. AOC and BDOC have often been measured separately as indicators of bacterial regrowth, or together as indicators of bacterial regrowth and disinfection by-product formation potential, respectively. However, this study proposes that both AOC and BDOC should be used as complementary measurements of bacterial regrowth potential. In monitoring of full-scale membrane filtration, it was determined that nanofiltration (NF) removed over 90% of the BDOC while allowing the majority of the AOC through. Heterotrophic plate counts (HPC) remained low during the entire period of monitoring due to high additions of disinfectant residual. In a two-year monitoring of a water treatment plant that switched its treatment process from chlorination to chlorination and ozonation, it was observed that the plant effluent AOC increased by 127% while BDOC increased by 49% after the introduction of ozone. Even though AOC is a fraction of BDOC, measuring only one of these parameters can potentially under- or over-estimate the bacterial regrowth potential of the water.  相似文献   

16.
In the last few years different methods for determining assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC) in drinking water have been proposed. However, there is no agreement on the most suitable methods for the assessment of treatment processes. A comparison of six methods, one for AOC(P17) determination and five for BDOC determination, using water samples taken at different steps in a water-treatment process in Sant Joan Despí (Barcelona, Spain) is reported. Results show that the biodegradable matter values given by AOC measurements are substantially lower than those obtained using BDOC methods. The various BDOC methods do not differ significantly in their results.  相似文献   

17.
Sequestration of polychlorinated biphenyls (PCBs) by activated carbon (AC) has been proposed as a remediation strategy for PCB-contaminated sediments. However, published PCB-AC adsorption isotherm data are sparse and, while sediment-derived dissolved organic matter (DOM) and biofilms are likely to be present in sediments, the impacts of these loadings have not been quantified. Batch laboratory experiments were undertaken to obtain equilibrium adsorption capacities, q(e), for 9 PCBs on virgin AC, DOM-loaded AC, and biofilm-covered AC. Isotherm data fit the Freundlich isotherm equation (average R2=0.94, n=27) over the range of aqueous concentrations studied ( approximately 0.1-1000 ng/L). Planarity effects were evident at low aqueous concentrations only (0.1-10 ng/L), where q(e) of three PCBs of similar hydrophobicity decreased with an increasing number of ortho-chlorines, indicating steric hindrances attenuated adsorption. The values of q(e) for DOM- and biofilm-loaded ACs were approximately one order of magnitude smaller than those on virgin AC when normalized by the available AC surface area, indicating that PCB adsorption likely occurred on specific regions of the AC structure. Nevertheless, virgin and loaded ACs used in this study had sufficiently high PCB adsorption capacities to warrant further study as an in-situ remediation alternative for PCB-contaminated sediments.  相似文献   

18.
Removal of bromide and natural organic matter by anion exchange   总被引:3,自引:0,他引:3  
Bromide removal by anion exchange was explored for various water qualities, process configurations, and resin characteristics. Simulated natural waters containing different amounts of natural organic matter (NOM), bicarbonate, chloride, and bromide were treated with a polyacrylate-based magnetic ion exchange (MIEX) resin on a batch basis to evaluate the effectiveness of the resin for removal of bromide. While bromide removal was achieved to some degree, alkalinity (bicarbonate), dissolved organic carbon (DOC), and chloride were shown to inhibit bromide removal in waters with bromide concentrations of 100 and 300 μg/L. Water was also treated using a two-stage batch MIEX process. Two-stage treatment resulted in only a slight improvement in bromide removal compared to single-stage treatment, presumably due to competition with the high concentration of chloride which is present along with bromide in natural waters. In view of the relatively poor bromide removal results for the MIEX resin, a limited set of experiments was performed using polystyrene resins. DOC and bromide removal were compared by treating model waters with MIEX and two polystyrene resins, Ionac A-641 and Amberlite IRA910. The two polystyrene resins were seen to be more effective for bromide removal, while the MIEX resin was more effective at removing DOC.  相似文献   

19.
Dissolved organic matter in estuarine water and seawater collected in the summers of 1980 and 1981 in the James River, Virginia and the mouth of Chesapeake Bay were separated into fractions according to their nominal molecular weights (NMW) by ultrafiltration. Estuarine waters contained higher concentrations of dissolved organic carbon (DOC). Among the fractions, between 66–89% of the DOC was found in the fraction with NMW below 10,000. Estuarine waters also had higher chlorine demands. At a dose of 5 mg l−1, in 23 h, about 90% of the added chlorine disappeared in estuarine waters, whereas, in seawater, only 60–75% of the chlorine had dissipated. At least two-thirds of the chlorine demand occurred in the first 5 h. About 10–30% of the chlorine demand may be attributed to the fraction with NMW above 10,000. The remaining chlorine demand was distributed almost equally between the fractions with ranges of NMW of 1000–10,000 and below 1000. If reactivity is measured in terms of organic chlorine demand (ΔClo) per unit weight of DOC, the fractions with lower NMW (< 1000 and 1000–10,000) always had a higher reactivity towards chlorine. Between these two fractions, the one with NMW between 1000 and 10,000 exhibited higher reactivity more frequently. The highest reactivity found was 1.4 mg ΔClo mg−1 DOC.  相似文献   

20.
The biogeochemical cycling of iron, manganese, sulfide, and dissolved organic carbon were investigated to provide information on the transport and removal processes that control the bioavailability of isotopic mercury amended to a lake. Lake profiles showed a similar trend of hypolimnetic enrichment of Fe, Mn, DOC, sulfide, and the lake spike ((202)Hg, purity 90.8%) and ambient of pools of total mercury (HgT) and methylmercury (MeHg). Hypolimnetic enrichment of Fe and Mn indicated that reductive mobilization occurred primarily at the sediment-water interface and that Fe and Mn oxides were abundant within the sediments prior to the onset of anoxia. A strong relationship (r(2)=0.986, n=15, p<0.001) between filterable Fe and Mn indicated that reduction of Fe and Mn hydrous oxides in the sediments is a common in-lake source of Fe(II) and Mn(II) to the hypolimnion and that a consistent Mn:Fe mass ratio of 0.05 exists in the lake. A strong linear relationship of both the filterable [Fe] (r(2)=0.966, n=15, p<0.001) and [Mn] (r(2)=0.964, n=15, p<0.001) to [DOC] indicated a close linkage of the cycles of Fe and Mn to DOC. Persistence of iron oxides in anoxic environments suggested that DOC was being co-precipitated with Fe oxide and released into solution by the reductive dissolution of the oxide. The relationship between ambient and lake spike HgT (r(2)=0.920, n=27, p<0.001) and MeHg (r(2)=0.967, n=23, p<0.001) indicated that similar biogeochemical processes control the temporal and spatial distribution in the water column. The larger fraction of MeHg in the lake spike compared to the ambient pool in the hypolimnion suggests that lake spike may be more available for methylation. A linear relationship of DOC to both filterable ambient HgT (r(2)=0.406, n=27, p<0.001) and lake spike HgT (r(2)=0.314, n=15, p=0.002) suggest a role of organic matter in Hg transport and cycling. However, a weak relationship between the ambient and lake spike pools of MeHg to DOC indicated that other processes have a major role in controlling the abundance and distribution of MeHg. Our results suggest that Fe and Mn play important roles in the transport and cycling of ambient and spike HgT and MeHg in the hypolimnion, in part through processes linked to the formation and dissolution of organic matter-containing Fe and Mn hydrous oxides particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号