首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
薄板坯连铸工艺的H2漏斗形结晶器可以生产宽度860~1 730mm的铸坯.对不同宽度H2结晶器内钢液流动、传热凝固行为进行研究,能加深了解H2结晶器内的冶金行为,并为H2薄板坯连铸设备制造及工艺参数优化提供指导.采用数值模拟技术研究拉速4.5 m/min时,宽度900、1 300、1 700mm结晶器内钢液流动、传热凝固行为.结果表明:结晶器宽度增加,流场变化显著,钢液自由液面近水口处波动加剧.不同宽度下,结晶器出口处铸坯坯壳厚度及其表面温度的差别主要体现在靠近铸坯窄边处.  相似文献   

2.
板坯连铸结晶器电磁制动技术及其应用   总被引:2,自引:0,他引:2  
陈芝会  王恩刚  赫冀成 《炼钢》2004,20(3):48-52
叙述了板坯连铸结晶器中应用电磁制动技术的发展、研究状况。电磁制动技术可以控制结晶器内钢液的流动,减少结晶器保护渣的卷渣,有利于结晶器内夹杂物的去除,从而提高铸坯质量,并有利于提高铸坯拉速。研究结果表明电磁制动特性取决于板坯宽度、浇铸速度、氩气流速和浸入式水口(SEN)形状等浇铸参数,介绍了各种浇铸参数对电磁制动效果的影响。  相似文献   

3.
 板坯连铸结晶器液面的波动行为是结晶器内钢液流动、结晶器自身振动以及辊子挤压铸坯内部未凝固的钢液造成液面波动综合作用的结果。结晶器液位波动的稳定性对板坯连铸过程的卷渣行为有直接影响。在工业板坯连铸生产实践中,一般在结晶器某一区域(比如结晶器中部)利用放射源或涡流传感器检测液位波动来代表该工况下的整体波动水平。利用三维气液两相流动的数学模型研究了浇铸参数对结晶器液位轮廓的影响,浇铸参数包括拉速、吹氩流量、浸入式水口出口角度和浇铸断面。研究结果表明,结晶器不同宽度位置的波动幅值差异较大,且与工艺参数密切相关。液面的波峰与波谷之差随着拉速的增加在窄面附近逐渐增大,随着吹氩流量的增加在水口附近逐渐增大。在水口出口角度15°条件下,水口和窄面附近的液位波动均较大,而在水口出口角度45°条件下,仅在水口附近存在较大的液位波动。研究结果表明,使用板坯连铸常规的15°浸入式水口,当铸坯宽度大于800 mm时,结晶器液面检测需要在水口和窄面附近同时布置液位检测设备,以便更全面反应结晶器的真实液面行为,使液面波动对轧板表面质量指导性增强,有效提高连铸工艺的控制水平。如使用45°浸入式水口可以继续沿用原有的液位检测布置。  相似文献   

4.
宽板坯连铸结晶器内液面波动的数值模拟   总被引:1,自引:0,他引:1  
以150 mm×(1 600~3 250) mm宽板坯连铸结晶器为研究对象,利用大型商业软件ANSYS CFX10.0建立了一个三维有限体积模型,采用多相流的VOF模型对结晶器内保护渣-钢液界面波动进行数值模拟,重点研究了拉速、水口倾角、铸坯断面宽度等工艺参数对结晶器内液面波动的影响.结果表明:随着结晶器宽度、拉速的增加,液面波动明显增大;采用较大的水口倾角,可以抑制液面波动,减少卷渣.  相似文献   

5.
王洪兴  曹梅林  刘志国 《炼钢》2012,28(3):37-41
通过水模试验对邯郸钢铁集团有限责任公司邯宝炼钢厂连铸结晶器液面波动原因进行分析。结果表明,随着板坯连铸机拉速提高、吹氩量增加、铸坯断面的增加,结晶器钢液面波动量增大;随着浸入式水口浸入深度增加和水口出口角度增大,结晶器内钢液面波动量减小。选择合适的拉速、恒速浇铸、优化浸入式水口形式和浸入深度、保持适当的吹氩量、执行标准化操作,可以降低结晶器钢液面波动量,提高连铸坯质量。采取优化措施后,结晶器钢液面波动量逐渐恢复到±3 mm以内,热轧卷板边部翘皮和夹杂缺陷比例逐月降低,缺陷率从2010年11月0.41%控制到2011年4月以后0.1%以下。  相似文献   

6.
重钢连铸板坯轧材的表面裂纹主要为横裂、纵裂、星状裂纹。在分析、研究裂纹形成原因的基础上 ,采取了一系列技术措施 ,取得了良好效果。重钢炼钢厂改进了结晶器铜板材质 ,完善了 Cr-Zr镀层结晶器的使用和管理制度 ,改进了连铸结晶器保护渣的质量 ,并使结晶器振动机构正常运行 ,铸坯均匀冷却 ,结晶器液面状态良好。在提高钢水质量的同时 ,推广恒速浇铸 ,从而使连铸板坯的表面缺陷大幅度降低 ,连铸板坯轧材表面裂纹从 0 .96% ,降至 0 .3 3 % ,经济效益显著。重钢改进连铸板坯质量@朱明  相似文献   

7.
本文运用数值模拟研究方法,研究高拉速厚板坯连铸非稳态结晶器流动特性,研究浸入式水口堵塞、水口不对中对结晶器流场、液面流速和对初生坯壳的影响。高拉速厚板坯连铸,铸坯质量下降,90%表面缺陷集中在铸坯边角区域,最严重的缺陷是铸坯中心和角部纵裂。非稳态工况对结晶器的流场影响因素更为显著,研究发现水口堵塞程度、水口出口流速、流量分配比是结晶器液面流速不对称、液面波动的主要影响因素,水口不对中是钢液流股对结晶器初生坯壳局部热冲击的主要因素,因此高拉速连铸应尽量避免非稳态工况操作,确保产品质量和效率的双赢。  相似文献   

8.
首钢京唐MCCR产线是国内第一条多模式连铸连轧产线,薄板坯高拉速连铸是实现无头轧制模式的基础,结晶器内流场控制是决定薄板坯高拉速连铸的关键。采用VOF两相流模型研究薄板坯连铸结晶器内流场特点,采用插钉法测量实际生产过程结晶器弯月面流速,并与对应工况条件下模拟结果进行对比校验了模型准确性。通过薄板坯连铸结晶器内流场的数值模拟仿真,获得了薄板坯高拉速条件下结晶器内钢液的流动特征。研究了连铸拉速、2种浸入式水口结构等因素对弯月面流速以及波高差的影响。结果表明:随着通钢量由3.4 t/min增加至8.2 t/min,采用四孔水口时,结晶器弯月面钢液流速由0.02 m/s增加至0.30 m/s,结晶器钢液面波高差由2.0 mm增加至7.2 mm;采用五孔水口时,结晶器钢液面波高差由0.25 m/s增加至0.5 m/s,结晶器钢液面波高差由2.6 mm增加至17.0 mm。高通钢量条件下(5.5~8.2 t/min),采用四孔水口更加有利于控制液面波动稳定性。  相似文献   

9.
液面波动是连铸过程的重要问题。推导了电磁搅拌作用下板坯连铸结晶器熔池液面稳定性指数(F)的函数表达式,分析了电磁场、结晶器、水口、浇铸速度等对F数的影响,评估了实际连铸系统工艺参数的稳定性。主要结果:(1)基于自由射流理论,建立了电磁搅拌下板坯连铸结晶器液面稳定性指数的理论公式;(2)各连铸参数按照影响液面稳定性由大到小排序依次是:磁感应强度、水口浸入深度、拉坯速度、板坯宽度、搅拌频率、水口倾角等;(3)对于厚度为230 mm的板坯连铸,现有各种板宽—拉速匹配下的F数均处于3~5之间,但在宽板宽—低拉速时参数优化的稳定性空间更大。  相似文献   

10.
金昕  孟子尧  任廷志  刘志伟  李杰 《钢铁》2017,52(3):42-48
 为研究结晶器内液面波动特性的规律,防止连铸坯卷渣,提高铸坯质量,利用紊流淹没射流理论建立了浇注过程中钢液流股撞击结晶器窄边速度和撞击点位置理论模型,推导出液面波动指数的解析公式;通过与试验结果对比,验证了该理论模型的预测结果;利用数值仿真模拟1 000 mm×130 mm板坯连铸结晶器在不同液面波动指数下的液面波动情况。计算结果表明,该理论模型结论与试验结论偏差为-4%~2.5%,可较好地评价结晶器内液面波动的剧烈程度,该型号板坯连铸结晶器最佳拉速为1.4 m/min。  相似文献   

11.
 采用1[∶]1水模型和工业试验研究了常规板坯连铸结晶器液面的瞬态特征。研究发现,常规板坯结晶器液面存在“周期性畸变”。该现象表现在液面每隔20~30 s出现约5 s的畸变。畸变期间窄面处液面凸起,宽度1/4处液面凹陷且表面流速达到极大值,易导致卷渣。定义上次液面畸变结束到本次畸变结束时间为畸变周期。水模型结果显示,提高拉速畸变周期减小,而提高水口浸入深度与倾角液面畸变周期增大,但改变这些参数不能消除周期性畸变。对液面畸变周期的影响程度为:水口倾角>拉速>水口浸入深度。工业试验也证实液面周期性畸变的确存在。适当增大水口倾角有利于减少液面周期性畸变导致的卷渣。  相似文献   

12.
 采用1[∶]1水模型和工业插钉法研究了吹氩板坯连铸结晶器内钢水流态,并讨论了通钢量、吹氩量、水口浸入深度与水口结构对结晶器流态的影响。水模型结果发现,结晶器内宏观流态主要包括双股流和单股流,钢水通量和吹氩量是影响结晶器内钢水流态的决定性因素。为得到双股流,应采用高通钢量和低吹氩量,缩小断面、增大浸入深度和使用凸底水口有利于双股流形成。基于水模型结果,为维持结晶器内双股流态,在实际浇铸中提出减少连铸过程吹氩量低于临界吹氩量,在宽断面和低拉速下使用凸底水口等措施。工业插钉试验结果与水模型吻合较好,这表明水模型结果可指导现场浇铸实践。  相似文献   

13.
以承德钢铁厂板坯连铸结晶器为原型,采用1∶1的水模型进行试验,研究了拉速、浸入式水口出口角度、水口浸入深度、水口底面结构及结晶器断面宽度等工艺参数对板坯结晶器内表面流速的影响。结果表明:拉速对表面流速的影响最大,随着拉速的提高,结晶器内钢液表面流速明显增大,当断面宽度为1 650 mm,拉速由0.7 m/min提高到1.4 m/min,表面流速由0.04 m/s提高到0.1 m/s;波浪面结构的浸入式水口表面流速效果最优。  相似文献   

14.
首钢京唐MCCR产线是国内第一条多模式连铸连轧产线,薄板坯高拉速连铸是实现无头轧制模式的基础,结晶器内流场控制是决定薄板坯高拉速连铸的关键.采用VOF两相流模型研究薄板坯连铸结晶器内流场特点,采用插钉法测量实际生产过程结晶器弯月面流速,并与对应工况条件下模拟结果进行对比校验了模型准确性.通过薄板坯连铸结晶器内流场的数值...  相似文献   

15.
插钉法研究板坯连铸结晶器液面特征   总被引:1,自引:0,他引:1  
任磊  张立峰  王强强 《钢铁》2016,51(2):49-54
 采用可以同时获取板坯连铸结晶器内弧侧、厚度方向中心面和外弧侧液面信息的插钉板,通过在结晶器内连续插取,研究了板坯连铸结晶器液面特征。得到了结晶器内不同时刻、不同位置处液面高度;发现了连铸生产过程中内、外弧侧液位有差异,提出了对称流不仅只是以水口为中心结晶器左右两侧流场的对称,还应包括以结晶器厚度方向中心面为中心,内弧侧与外弧侧流场的对称;预测了该工况下结晶器内液面波动较大以及卷渣发生频率较高的位置为水口附近和窄面与宽度方向1/4之间液面流速较大的部位;验证了插钉试验不仅可以获得连铸结晶器内的液面流速,还可通过多次插钉试验研究液面波动特征,在传统的物理模拟和数值模拟方法之外提出了一种直接、接触式测量连铸结晶器液面轮廓进而研究液面波动的方法。  相似文献   

16.
张佩  文光华 《云南冶金》2009,38(5):25-28
以重钢板坯连铸结晶器为研究对象,选用不同液面保护渣模拟材料进行实验,并结合实际生产结晶器内保护渣覆盖状况观察结果,得出水模实验过程中合理的液面保护渣模拟方法;在此基础上建立起结晶器内液面波动大小与保护渣覆盖状态的关系,结果表明在实际操作中结晶器内液面波动在3—7mm范围内,可得到比较理想的保护渣覆盖效果。  相似文献   

17.
通过统计和分析现场数据,得出限制MCCR薄板坯连铸连轧低碳钢拉速提高的主要因素为结晶器热像图中的冷齿和结晶器液面波动,对冷齿和液面波动的成因进行研究,并提出有效控制措施。研究结果表明,结晶器热像图中的冷齿与结晶器弯月面凝固收缩特性相关,受冷却铜板厚度、碳当量、拉速及保护渣影响,反映到铸坯实物上为凹陷或者裂纹缺陷,需合理匹配形成最优参数组合,以降低因冷齿造成的漏钢风险。当结晶器铜板厚度减薄量在6.7%以内时,一冷水维持原设计流量;当结晶器铜板厚度减薄量在6.8%~11.1%时,拉速4.0 m/min以上时需降低10%的一冷水流量;当结晶器铜板厚度减薄量在11.2%~15.6%时,所有拉速下需降低18%的一冷水流量,同时使用高碱度B型保护渣。针对高拉速下结晶器液面波动问题,通过数值模拟研究浸入式水口插入深度、拉速、结晶器断面宽度及电磁制动等参数对结晶器内流场和温度场的影响规律,得到不同拉速和不同断面条件下电磁制动电流的合理配置,使得拉速达到5.5 m/min时钢液面最大流速仍小于0.3 m/s。上述研究结果应用后,结晶器冷齿问题得到有效缓解,110 mm厚的薄板坯最高拉速达到5.8 m/m...  相似文献   

18.
刘文祥  任磊 《钢铁》2022,57(1):83-92
浸入式水口出口角度影响射流的动能损失,进而影响结晶器内的流动行为.建立了比例为1 ∶ 4的水模型,在模型拉速为0.425 m/min、水口浸入深度为40 mm的条件下,借助粒子图像测速技术研究了浸入式水口出口倾角为0°和+5°对宽幅连铸结晶器内流动行为的影响.结果表明,0°和+5°水口条件下,射流在模型内的流动方式有很...  相似文献   

19.
 基于实际板坯连铸结晶器建立了耦合大涡模拟(LES)湍流模型和VOF多相流模型的三维数值模拟模型,讨论了不同结晶器浸入水口(SEN)结瘤程度和SEN未对中分布对结晶器内瞬态多相流场及卷渣行为的影响。通过用户自定义程序成功实现了不同工况下结晶器内卷入渣滴数量、大小、空间分布等信息的定量化预测,并得到了弯月面不同位置处发生卷渣的概率分布。结果表明,水口顺时针旋转5°的未对中分布下由于钢液射流更多地撞击宽面,导致弯月面近窄面处液位分布有轻微降低,液位波动也从理想状态下的±(6~7) mm降低至±5 mm以内。SEN结瘤对弯月面液位波动有较大影响,SEN左侧完全堵塞、右侧未堵塞情况下液位波动增大至±11 mm左右,而SEN左侧堵塞2/3且右侧堵塞1/3情况下弯月面液位波动则增大至±15 mm左右。理想工况下净卷渣速率为0.0130 kg/s,卷渣主要发生在弯月面四周以及流股碰撞处。SEN未对中布置工况下净卷渣速率轻微降低至0.009 3 kg/s,但宽面附近卷渣概率明显增大。SEN左侧完全堵塞且右侧未堵塞和SEN左侧堵塞2/3且右侧堵塞1/3情况下净卷渣速率则分别增大至0.045 5 kg/s和0.0670 kg/s;卷渣主要由过大的钢液流速对弯月面的剪切作用造成,且主要位于水口至1/4结晶器宽度的范围内。水口结瘤后不对称流动造成的旋涡增加,由此引起的卷渣也相应增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号