共查询到17条相似文献,搜索用时 93 毫秒
1.
2.
3.
介绍一种新研制开发的轧辊偏心补偿控制器。该控制器采用TMS320C25—D型开发/高速处理板的扩展板.配制数据采集和输出电路.可以完成信号采集与处理.然后以电压形式输出补偿偏心的信号。加到液压系统。 相似文献
4.
鉴于岩爆机理的复杂性以及岩爆发生前后信号提取困难的现状,对高应力区进行岩爆倾向性预测研究具有现实意义。为提高岩爆预测的准确性,基于岩爆预测多维非线性的特点,选取4个影响岩爆发生的核心指标作为判决依据,结合粒子群优化算法(PSO)与径向基神经网络(RBF)建立了PSO-RBF神经网络岩爆预测模型。采用试错法确定隐含层节点数后,进一步利用国内外典型工程数据对模型参数隐含层基函数中心ci,隐含层节点宽度σi以及隐含层与输出层间权重因子w进行学习优化以获取最优参数,并将所建立的模型应用于实际工程的岩爆倾向性预测。结果表明:利用该模型预测的岩爆等级与实际岩爆情况基本相符,相对误差率为10%,精度较以往预测方法有显著提高。 相似文献
5.
6.
针对轧机普遍存在的轧辊偏心问题,结合偏心信号的特点及补偿控制方法,将一种在工业机器人重复性控制领域广泛使用的迭代学习控制方法应用在轧辊偏心补偿控制中。基于对周期误差数据不断学习,轧机偏心控制系统的压下控制调整更加精准。对构造的轧辊偏心信号进行测试,其相比于快速傅里叶变换补偿方法,迭代学习10~50次后的补偿精度提高20.1%~56.4%;经过迭代学习律参数的优化,迭代学习后补偿精度达到50%以上的同时,收敛速度大幅增加。考虑到在轧机加减速状态时偏心信号频率发生改变,通过迭代学习控制对变频信号进行补偿,经过10次的快速学习补偿,误差评价函数值达到最初的13.6%。利用冷连轧一道次的生产线实际数据进行测试,结果表明迭代学习补偿控制能够在学习过后有效提升偏心补偿精度。研究基于迭代学习控制方法,为轧辊偏心的补偿控制提供一定的参考。 相似文献
7.
8.
针对轧辊偏心问题,提出了采用相干时间平均算法进行信号的预处理,以减少或消除随机噪声,提高信噪比;采用快速傅里叶变换方法,对其进行进一步分析处理,得出偏心信号中所含各次正弦波的幅值、频率和相角,从而确定轧辊偏心信号的参数模型;以此为依据,控制轧机的压下系统,实现对轧辊偏心的有效补偿. 相似文献
9.
AGC系统中的轧辊偏心问题 总被引:8,自引:1,他引:8
本文介绍本钢热连轧厂引进的AGC系统中抑制轧辊偏心扰动的一种有效方法──轧制力偏心滤波器,分析了轧制力偏心滤波器的特点及其控制算法的优越性,并给出实际的滤波效果 相似文献
10.
11.
针对傅里叶变换、小波算法等传统信号处理方法在非线性信号的提取与重构中存在的缺陷,提出了基于聚合经验模态分解的轧辊偏心信号提取新方法。另外,针对传统自动厚度控制系统(AGC)在偏心补偿控制中的不足,设计了有偏心补偿环节的 AGC系统。新方法将轧制力信号分解为多个不同特征模态函数,从中提取表征偏心信号的特征模态函数,并用此重构偏心信号,最后将新方法重构的偏心信号投入到此系统中控制轧件厚度。仿真及实验结果表明,利用聚合经验模态分解方法重构得到的轧辊偏心模型可以很大程度减小厚度波动,补偿效果优于小波算法。 相似文献
12.
13.
14.
15.
16.
基于RBF-BP混合神经网络的烧结烟气NOx预测 总被引:1,自引:0,他引:1
摘要:对烧结烟气NOx生成量进行预测,能为烧结NOx源头和过程减排提供有效指导。利用BP神经网络模型和RBF神经网络模型对烧结烟气NOx进行了预测,在此基础上结合BP模型自适应学习能力强和RBF模型快速收敛的特性,采用优化模型结构、设立连接层的方法,构建RBF BP混合神经网络模型进行了NOx预测研究,并对3种模型的预测结果进行了对比分析。研究表明,3种神经网络模型中,RBF-BP混合模型的均方根误差为11.37mg/m3,平均绝对误差为7.14mg/m3,最大绝对误差为35.47mg/m3,最小绝对误差为0.0083mg/m3,各评价指标均为3种模型中最优,混合神经网络模型的预测数据稳定性更好,结果拟合程度更高且收敛速度最快。采用混合模型预测NOx能有效消除烟气NOx生成量反馈延迟。 相似文献
17.
在对黄金市场进行分析时,通常根据黄金价格数据自身特点选取合适的模型进行建模预测,但因黄金价格数据本身的非线性特征比较明显,模型的选取往往较为困难,预测精度不高。利用神经网络的特性,建立了RBF神经网络,有效地解决了模型选择不当的难题。实证表明,RBF神经网络建立的非线性模型预测精度较高。 相似文献