首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
马帅  李宇  张玲玲  卢翔  苍大强 《钢铁》2017,52(4):78-83
 电炉渣相对于转炉渣具有更多的高温余热和更低的含铁组分回收率,但目前还没有合适的处理方法利用其余热回收更多的含铁物质。试验以河沙为改质剂,采用熔态改质方法处理电炉渣,研究在不同改质剂掺量下电炉渣碱度变化对其含铁组分回收率的影响规律,并进一步采用XRD、SEM-EDS等手段分析其中的矿相和结构变化。研究表明,采用熔态改质方法,在电炉熔渣排渣过程中加入改质剂降低其碱度,不仅能够充分利用其余热,还能够提高熔渣固化后的铁质组分回收率和胶凝活性,是电炉渣排渣处理的一条新途径。当改质电炉渣碱度下降到1.6时,随着SiO2的增加,以三价铁形式存在的Ca2Fe2O5和以二价铁形式存在的RO相减少并消失,活性矿物Ca2SiO4和强磁性的MgFe2O4、Fe3O4、FeCr2O4等形成并增加,这有利于铁及铬、锰重金属的回收以及尾渣胶凝活性的提高。在碱度为1.3时,强磁性矿物数量和磁选物质含铁组分回收率达到最大值69.71%,铁品位提高了43.74%。当改质电炉渣碱度小于1.3时,磁性矿相逐渐转变为弱磁性的含铝尖晶石,铁组分回收率下降。  相似文献   

2.
摘要:在含铬铁水转炉冶炼过程中,Cr很容易被氧化成Cr2O3进入渣中,并与渣中其他成分反应生成高熔点含铬尖晶石。采用FactSage热力学软件计算了CaO-SiO2-FeO-Cr2O3-MgO-MnO转炉渣系在冶炼温度1300~1700℃下的物相组成,研究了Cr2O3、FeO和碱度对炉渣中尖晶石相含量的影响规律。研究结果表明,温度和渣系成分都会影响炉渣的物相组成。渣系中含有Cr2O3时,物相中均含有MgCr2O4、FeCr2O4和MgFe2O4尖晶石相,尖晶石相的总含量随着Cr2O3和碱度的增加而增加,随着炉温的升高而减少。温度为1300~1500℃时,炉渣中尖晶石含量随着FeO的增加而增加;温度为1500~1700℃时,尖晶石含量随着FeO的增加而略有减少。在温度小于1500℃的转炉冶炼前中期,炉渣物相组成中尖晶石相所占比例较大,易造成化渣不良或者炉渣粘稠,影响转炉冶炼工艺的顺行。  相似文献   

3.
在统计分析了转炉前期炉渣碱度和钢水温度,终点炉渣碱度、终渣全铁含量和终点钢水温度对脱磷率影响的基础上,优化了0.29%Si,0.085%P铁水180t复吹转炉的高磷钢冶炼工艺。200炉冶炼结果表明,通过使用低枪位使钢水快速脱碳升温,控制前期炉渣碱度≥2.2、终点炉渣碱度2.8~3.2,终点炉渣全铁含量≤17%,转炉出钢温度1 650~1 680℃,可控制脱磷率≤60%,终点钢水磷含量均值为0.035%。  相似文献   

4.
 在低温下脱磷转炉熔渣中的磷质量分数过高往往是限制转炉渣循环利用的重要因素,因此如何有效降低转炉熔渣中磷质量分数成为众多钢铁企业迫切需要解决的重点问题之一。基于此,从理论分析和工业试验角度,并结合XRD、SEM-EDS和拉曼光谱等试验手段进一步分析研究了理论热力学条件、转炉渣熔点、矿相结构和炉渣结构对低温气化脱磷的影响。通过理论分析表明,较高温度、较低的FeO含量和碱度有利于低温气化脱磷反应。工业试验结果表明,当终点温度为1 350~1 360 ℃、转炉渣FeO质量分数为25%~35%、碱度控制为1.2~2.5时,气化脱磷率可以达到30%以上。当炉渣碱度小于1.25、FeO质量分数小于35%时,适当地提高炉渣碱度和FeO含量能促进炉渣熔点降低,进而有利于低温气化脱磷反应的发生。XRD和SEM-EDS分析结果表明,转炉渣主要由富磷相、基体相和RO相组成,其中Si、P、Ca质量分数高的Ca2SiO4-Ca3(PO4)2富磷相的存在不利于低温气化脱磷反应发生,Fe、Mn等金属氧化物质量分数高的RO相和基体相的存在有利于低温气化脱磷。通过转炉渣拉曼光谱分析表明,当转炉渣硅氧四面体结构Qn(n=1,2,3)相对含量较低时,渣中聚合度降低,且Ca3Si2O7相含量较少,炉渣流动性较好,此种渣结构有利于低温气化脱磷。通过本研究可以为钢铁企业实现脱磷转炉渣的二次利用提供借鉴。  相似文献   

5.
何赛  林路  刘亚琴  吕岩  胡砚斌  梁强 《钢铁》2022,57(6):167-174
 针对含磷转炉渣中磷、铁及锰等有价资源回收及有价元素回收后钢渣资源化利用的问题,通过理论计算、电阻炉试验、感应炉试验等研究手段,系统分析了熔融改质后的含磷钢渣碳热还原回收有价元素的热力学条件和影响规律。研究结果表明,还原温度为1 723 K、碱度为1.0~2.0时,低碱度有利于渣中铁、磷资源的回收;当炉渣碱度为1.0时,Fe2O3、P2O5、MnO还原率分别可达到99.50%、84.47%和3.26%,渣中铁元素和磷元素收得率分别为99.50%和68.69%;当碱度为1.5时,渣中Fe2O3、P2O5还原率分别为90.45%和63.73%,与碱度为1.0时相比还原率降低;当碱度为2.0时,渣铁未实现完全分离,渣中Fe2O3还原率为71.43%。在感应炉内对熔融改质工业渣碳热还原试验中,在碱度为1.0时,温度为1 723 K条件下,渣中铁元素收得率可以达到99%以上,磷收得率为47.18%;通过热力学分析可以发现,FeO、P2O5与MnO相比更容易被碳还原,在试验过程发现,FeO及P2O5先还原,反应20 min后渣中MnO开始被还原,整个还原过程中渣中MnO含量略有降低;碳热还原后渣中FeO质量分数仅为0.07%,渣中P2O5质量分数为0.93%,MnO质量分数为2.83%;利用FactSage对比改质渣还原前后物相组成可知,还原后渣中含铁物相(Ca3Fe2Si3O12)物相能得到有效控制,磷酸钙质量分数明显减少,渣中橄榄石相大幅度增加,提高了钢渣的应用范围,这为含磷钢渣有价元素回收及资源化利用提供了研究基础。  相似文献   

6.
陈均 《钢铁》2014,49(12):80-84
 为实现转炉除尘资源的循环利用,提出采用除尘灰、炼钢污泥、废镁砖、碳化硅及粘接剂按一定比例混合压制成球后用于转炉终点炉渣改质的思路,并通过工业试验验证了终渣调整剂的炉渣改质效果。工业试验表明,采用新研制的终渣调整剂后,调渣前后炉渣全铁质量分数平均降了1.31%,MgO质量分数平均上升了0.71%;与原改质剂相比,起渣时间平均提前了0.11 min,溅渣时间缩短了0.12 min,溅渣护炉效果更好。新型终渣调渣剂的成功研制,不仅实现了二次资源的循环利用,更是提高了转炉冶金效果,降低了生产成本。  相似文献   

7.
转炉留渣双渣工艺两阶段脱磷对比   总被引:1,自引:0,他引:1  
王林珠  包燕平  李翔 《钢铁》2019,54(8):37-42
 为了获得两阶段脱磷的关键工艺参数,通过统计100 t转炉留渣双渣工艺生产数据,比较了脱磷及脱碳阶段的脱磷有利条件,研究结果表明,两阶段脱磷条件对脱磷效果的影响规律存在显著差异,脱磷阶段炉渣碱度为1.8~2.2、Fe2O3质量分数为23%~28%、钢液温度为1 350~1 400 ℃时,可获得最优的脱磷效果;脱碳阶段炉渣碱度为3.2~5.2、Fe2O3质量分数为18%~30%、钢液温度为1 600~1 700 ℃时,提高炉渣碱度及Fe2O3质量分数或降低钢液温度可获得更优的脱磷效果;脱磷、脱碳阶段都没有达到热力学平衡,但脱磷阶段与热力学平衡差距更大,脱碳阶段更接近热力学上的平衡。  相似文献   

8.
通过二次回归正交设计法,在实验室测定了合成转炉渣的熔化温度,并且回归出转炉渣熔化温度与各成分之间的回归方程,通过该回归方程可以计算出各种组成的转炉渣的熔化温度。各组元对转炉渣熔化温度都有影响,随碱度升高,合成渣熔化温度升高;随Fe2O3含量增加,合成渣熔化温度降低;随Mg O的增加,合成渣熔化温度先降低后升高;随Ca F2含量的增加,合成渣熔化温度降低。在铁水预处理温度下,炉渣碱度不宜超过3,Fe2O3含量不宜30%,Mg O含量8%左右为宜,复合助熔剂助熔效果优于单一助熔剂,助熔剂中Ca F2和Na2O的含量都不宜超过10%。  相似文献   

9.
转炉炉渣用于烧结配料试验获得成功,为转炉炉渣的综合利用开辟了一条新途径。从1986年起,矿渣厂将平炉渣与转炉渣实行分线处理,利用该厂的闲置设备,因陋就简,于11月底建成一条小型破碎、磁选、筛分生产线,对转炉渣进行加工并形成了一定的生产能力。转炉炉渣经加工后小于10mm的成品渣,送烧结厂用作烧结配料掺合料,以代替部分熔剂,少数经过磁选的渣粉,可用作生产炉渣水泥的原料。 1.转炉渣的性能及加工工艺流程 (1) 转炉渣的性能。二炼钢厂的转炉渣品种单一,碱度高,  相似文献   

10.
在实验室条件下,研究高炉渣中MgO及Al2O3质量分数对高炉渣冶金性能的影响规律。试验结果表明,当高炉渣碱度为1.1、MgO质量分数为12%不变时,随着Al2O3质量分数的增加,高炉渣熔化性温度逐渐增加,且当Al2O3质量分数超过17.5%时,高炉渣初晶相由黄长石区域转变成尖晶石区域,而且在1500℃时,高炉渣黏度逐渐增加而渣铁硫分配比降低;当高炉渣碱度为1.1、Al2O3质量分数为20%不变时,随着MgO质量分数的增加,熔化性温度先降低后增加,当MgO质量分数超过11.8%时,高炉渣初晶相由黄长石区域转变成尖晶石区域,而且在1500℃时,高炉渣黏度逐渐降低而渣铁硫分配比增加。  相似文献   

11.
将工业铜渣和工业镁渣按一定比例混合后进行复合改质,对改质后混合渣进行磁选,并通过XRD、SEM分析和热力学计算对改质前后混合渣中的物相变化特征进行研究。结果表明,复合改质能够使铜渣中弱磁性富铁相铁橄榄石向强磁性镁铁尖晶石转变,并可通过磁选进行分离。碱度的降低有利于混合渣中镁铁尖晶石形成,但不利于硅酸盐相生成。本文试验范围内碱度的最佳值为2.05,在该碱度下混合渣的磁选产率和回收率分别为65.32%和79.34%,且磁选后尾渣中硅酸盐相含量相对较多。  相似文献   

12.
复吹转炉最佳成渣路线的探讨   总被引:2,自引:0,他引:2  
复吹转炉冶炼过程中不同的成渣路线直接影响着冶炼操作的稳定性、终点的命中率和炉衬的寿命。为此从炉渣碱度和炉渣氧化性两个方面讨论了复吹转炉冶炼低磷铁水和磷含量较高的铁水的成渣路线。结果表明,由于冶炼操作参数的不同,冶炼磷含量较高铁水的炉渣中的∑FeO含量和炉渣碱度比冶炼低磷铁水时高得多,并在此基础上提出了复吹转炉冶炼过程中的最佳成渣路线。  相似文献   

13.
镍火法冶炼的高硅酸铁渣在综合利用中还原提取铁比较困难,通过在镍熔炼渣中适当增加CaO含量、减少SiO2含量以改善后续还原提取铁的热力学条件.在对所确定的新渣型对镍锍进行分离试验后,对熔炼终渣进行物相分析和还原提取铁试验,探讨了原渣和高钙低硅新渣型还原提取铁的不同.研究结果表明,高钙低硅新渣型终渣中铁主要以Ca(Fe,Mg) Si2O6以及MgFe2O4形式存在,50%以上的Fe以MgFe2O4的形式存在,其磁性以及还原性都比原渣中的(Fe,Mg)2SiO4要好,有利于其还原.与原渣的还原性相比,在试验条件下,当wCaO/wSiO2为0.80时,其还原率由48.53%提高到了57.45%.  相似文献   

14.
采用煤基直接还原熔分技术和FactSage热力学分析软件以及XRD分析手段,研究了渣系碱度wCaO/wSiO2对高铁铝土矿含碳球团渣相组成和渣铁分离效果的影响。实验结果表明,渣系碱度对含碳球团的渣系组成和渣铁分离效果有重要影响。当碱度为1.0和1.5时,粒铁尺寸最大,渣铁的分离效果最好,粒铁收得率分别为91.55%和91.86%;当碱度为0.5时,粒铁尺寸较小,渣铁分离效果较差,粒铁收得率为65.43%。当碱度为2.0时;粒铁尺寸最小,渣铁分离效果最差,粒铁收得率只有44.53%。XRD分析结果表明,当渣系碱度分别为0.5、1.0、1.5和2.0时,熔分渣的主要组成分别为α-Al2O3-CaAl2Si2O8、α-Al2O3-CaO·6Al2O3-Ca2Al2SiO7、CaO·6Al2O3-Ca2SiO4-Ca2Al2SiO7、Ca2Al2SiO7-Fe2SiO4。FeAl4O7、CaAl4O7以及金属铁在熔分渣中的含量较少。  相似文献   

15.
Steel slag had lower activity and much lower hydration rate than cement.Quicklime and iron tailings were designed as modification agent to adjust the composition and properties of high temperature steel slag.The results show that quicklime as modifier can greatly increase the content of cementitious minerals in modified steel slag and also promote the decomposition of RO phases and transformation of MgO in RO phase to f-MgO.After high temperature modification with compound modifier of quicklime and iron tailings,steel slag shows the main mineral phases of C3 S,C2F and MgFe2O4.The activity index of modified steel slag at 28 days reaches 95.5% when the steel slag is modified by 15% of the compound modifier with the ratio of quicklime to iron tailings equal to 2∶1at 1 350℃.Moreover,the sample with the modified steel slag exhibits the dense structure of hydration paste and the main hydration products of C-S-H gels and Ca(OH)2 crystals.  相似文献   

16.
结合转炉超低硫钢研发试验及生产实际,分析了转炉原材料中硫含量分布,得出铁水及带渣量、废钢、石灰占转炉入炉原料总硫质量分数的70%以上;研究了150 t顶底复吹转炉碳氧积对终渣(FeO)的影响,吹炼时间(0~15 min)、炉渣综合碱度R(2~4)和(FeO)(15%~25%)以及转炉钢水终点温度(1640~1700℃)对渣-钢硫分配比LS=(S)/[S]的影响。20炉无取向硅钢AGW600生产结果表明,当转炉终点碳氧积控制在0.002 8以内,二元碱度3.2~3.7、转炉钢水终点温度1675~1710℃、渣中(FeO)不超过20%,渣-钢硫分配比LS达7.0,钢水终点[C]为0.025%~0.048%,[S]为0.0024%~0.005 7%,钢材的[C]为0.0012%~0.0029%,[S]为0.0022%~0.0047%。  相似文献   

17.
转炉液态渣的碱度(CaO/SiO2)一般为2.8~4.2,热容2.5 kJ/(kg·℃),进入渣罐后的炉渣温度约为1 540℃,有良好的导电性,可以利用其热能和氧化钙。当70 t电弧炉兑加120 t转炉液态渣8 t,可使平均冶炼周期由52 min降至47 min,电耗由400 kWh/t降至355 kWh/t,石灰加入量由3.6 t降至1.0 t,氧气消耗由28 m~3/t降至25 m~3/t,可有效地节约资源和减少炉渣的排放。  相似文献   

18.
 The process of “re-resourcing of converter slag” was put forward based on the analysis of the existing steel slag treatment process. The converter slag obtained from Jinan steel plant was studied. After grinding, the slag contained 33% of iron particles, 5484% of magnetic part (wTFe=20%), and 4184% of non-magnetic part, which could be used for making cement directly. At a temperature below 1000 ℃, the non-magnetic Fe2O3 in the slag could be efficiently reduced to magnetic iron by pure H2 and CO. The slag after precise reduction had high degree of dispersion and did not get sintered, which provided an optimum condition for the separation of iron and impurities. To separate the slag and enrich the iron after reduction, the laboratory-scale device of magnetic separation was designed and made. The process of slag re-resourcing, which included magnetic sorting, precise reduction, magnetic separation, and removal of free calcium oxide (f-CaO), was proposed to obtain iron-rich magnetic materials and cement adulterant materials. Through this process, 33 kg iron particles, 150 kg iron-rich material and 700 kg cement could be obtained in each ton slag. Besides, this process to recycle converter slag had a lower energy and material consumption and no pollutant emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号