首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
为了平衡算法的探测能力和开采能力,提高粒子群算法在不同类型问题上的综合性能,提出了一种基于自适应多种群的粒子群优化算法(PSO-SMS)。算法包含重组、子群规模调整和探测三个模块。在演化初始阶段,整个种群被划分成许多子种群。重组模块使不同子群间可以共享优势信息,有利于单峰和多峰函数的优化。当种群陷入潜在的局部最优时,探测模块可基于搜索过程的一些历史信息,帮助跳出当前的局部最优。通过子群规模调整,每个子种群的大小随着进化的过程而逐渐增加,有利于提高算法在初始阶段的探测能力和后期的开采能力。通过CEC2013的测试集与其他七种PSO算法的比较表明,PSO-SMS算法在解决不同类型的函数优化问题上有着突出的性能表现。  相似文献   

2.
盆地模拟中,根据现有图纸进行数据采集是重要的环节,但数字化采集面临着工作效率与精确度之间的权衡。结合目标检测和粒子群优化(PSO)技术,提出一种基于粒子密度控制的粒子群优化Snake曲线提取算法。该算法控制粒子间保持一定距离,从而克服传统PSO算法容易早熟的缺点,并通过动态修改模型参数加快了收敛速度。将改进的算法与传统方法比较,实验证明改进方法是有效的,并已运用于实际工程中。  相似文献   

3.
基于动态多种群的多目标粒子群算法   总被引:2,自引:0,他引:2  
研究进化算法在求解多目标优化问题时,极易陷入到伪Pareto前沿(等价于单目标优化问题中的局部最优解),为了提高优化过程,提出一种基于动态多种群的多目标粒子群算法(DMSMOPSO).在DMSMOPSO算法中,为了增加种群的多样性,提升粒子跳出局部最优解的能力,采用多子群进行搜索并且子群是动态地进行构建;采用K-均值聚...  相似文献   

4.
基于多尺度图像的主动轮廓线模型   总被引:7,自引:0,他引:7  
主动轮廓线模型是广泛应用于数字图像处理的一种目标轮廓跟踪算法,但在实际使用过程中,现有模型易受干扰噪声及虚拟边缘的影响,且于凹陷轮廓的跟踪能力较差,在多尺度图像分析的基础上,引入梯度矢量流的概念,并改进其计算方法,提出了一种新的主动轮廓线模型,该模型利用梯度矢量流产生的引力,在图像的尺度空间中搜索目标轮廓,不仅能有效地排除干扰,搜索凹陷轮廓,而且便于引入新的约束条件,实验表明该模型有较好的鲁棒性和  相似文献   

5.
结合动态概率粒子群优化算法(DPPSO)特点,针对传统的单种群粒子群优化算法易陷入局部最优、收敛速度较慢的缺点,文中提出一种基于异构多种群策略的DPPSO.该算法在进化过程中保持多个子种群,每个子种群以不同的DPPSO变体进行进化,子种群之间根据一定规律进行通信,从而保持整个种群内部的信息交流,进而协调DPPSO的勘探和开采能力.通过典型的Benchmark函数优化问题测试并分析基于异构多种群策略的DPPSO性能,结果显示,使用该策略的算法收敛速度较快,稳定性有较显著提高,具有较强的全局搜索能力.  相似文献   

6.
虽然Snake模型是一种有效的基于参数的轮廓探测方法,但由于其对初始位置过于敏感,不但参数选取缺乏严格的理论指导,且不能处理拓扑结构改变的问题。为此,针对Snake模型在弱边缘处容易溢出等不足,首先通过引入区域信息对Snake模型的图像力进行了修正,然后对Snake模型容易陷入局部极小化的问题,利用粒子群优化算法的全局优化特性和良好的数值稳定性来对Snake模型的分割结果进行优化。人工合成图像和医学图像的实验结果表明,该方法是有效的。  相似文献   

7.
应用主动轮廓线生长模型的细胞核自动分割   总被引:3,自引:0,他引:3  
胡敏  平西建  郭戈  丁益洪 《计算机工程》2006,32(1):37-39,129
提出了一种改进的主动轮廓线模型应用于细胞核的分割。在利用极限腐蚀检测到每个细胞核的种子点后,以种子点为中心点分别建兢一个基于极坐标描述的生长Snake模型,加入了一个基于区域相似度的生长能量,克服了传统模型须将初始轮廓置于真实边界附近的缺点;在应用贪心算法求解时,搜索空间由常规的8邻域减少为径向的两个相邻量化点,提高了计算效率。  相似文献   

8.
多种群粒子群优化算法   总被引:3,自引:1,他引:3  
将一定规模的粒子群平分成三个子群,并分别按基本粒子优化算法、ω自线性调整策略的粒子群算法和云自适应粒子群算法三种不同规则进化,既保持各个子群和算法的独立性和优越性,又不增加算法的复杂性,并提出“超社会”部分,重新定义了速度更换式子,同时还引入了扩张变异方法和扰动操作。实验仿真结果表明,给出算法的全局搜索能力、收敛速度,精度和稳定性均有了显著提高。  相似文献   

9.
传统粒子群优化算法容易陷入局部最优解,搜索效率不高,针对此问题,提出了一种基于种群关系和斥力因子的多种群粒子群优化算法SRB-PSO (Swarm-Relation-Based PSO).根据当前搜索结果定义种群之间统治、对等和被统治3种关系,通过引入斥力因子来保证种群间搜索的多样性,并通过统治和被统治关系提高算法的搜索效率,从而在改善算法的全局搜索性能的同时提高解的质量.将算法与其他几种主流粒子群优化改进算法在标准测试集上进行对比,实验结果证明了SRB-PSO算法能较好地保持粒子多样性,全局搜索能力强,在解决多峰函数时的性能优于其他几种主流粒子群优化改进算法.  相似文献   

10.
针对多模态函数寻优过程中开发与探索能力难以平衡的问题,提出一种基于多种群的改进粒子群算法(EMSPSO)。该算法在基于种群的粒子群算法(SPSO)的基础上改进了种群生成策略,通过在个体最优值中选择种子,将粒子群分为若干独立进化的种群,增强了算法收敛的稳定性;为了提高粒子的利用率、算法的全局搜索能力和搜索效率,引入冗余粒子重新初始化策略;同时为了防止算法在寻优的过程中遗漏适应度较优的极值点,对速度更新公式进行改进,使算法的开发与探索能力得到了有效的均衡。最后选用6个典型的测试函数进行对比实验,实验结果表明,EMSPSO具有较高的多模态寻优成功率与较优的全局极值搜索性能。  相似文献   

11.
彭虎  黄伟  邓长寿 《计算机应用》2012,32(2):456-460
微粒群优化(PSO)算法是一种非常有竞争力的求解多目标优化问题的群智能算法,因其容易陷入局部极值,导致非劣解集的收敛性和正确性不理想。为此提出一种基于多目标分解进化策略的多子群协同进化的多目标微粒群优化算法(MOPSO_MC),算法中每个子群对应于一个多目标分解之后的子问题,并构造了一种新的速率更新策略,每个粒子跟踪自身历史最优值、子群最优值和子群邻域最优值,从而在增强算法的局部寻优能力的同时,也能从邻域子群获得进化信息,实现协同进化。最后通过仿真实验,与现在主流的多目标微粒群算法在ZDT基准测试函数上比较,验证了算法的收敛性,解分布的均匀性和正确性。  相似文献   

12.
新型多群体协同进化粒子群优化算法   总被引:2,自引:0,他引:2       下载免费PDF全文
在基本的MCPSO算法中除了主群与从群的信息交流,从群之间没有信息交流。为了解决这一问题,提出了一种具有中心交流机制的改进MCPSO算法,该策略可以实现各个从群之间的信息交流,从而加快算法收敛。仿真实验结果表明改进后的算法具有较好的求解精度和较快的收敛速度。  相似文献   

13.
徐文龙  须文波  孙俊 《计算机应用》2007,27(9):2147-2149
传统图像插值方法简单,容易实现,但经过插值后的图像会增加一定的虚假内容,导致图像模糊。为提高插值图像的质量和图像的分辨率,提出一种基于量子行为粒子群优化(QPSO)算法的图像插值方法。该方法利用QPSO算法在以传统插值图像为基础形成的解空间中,寻找符合目标函数的最优高分辨率图像。实验证明,该方法实用、可行,且能得到质量较好的插值图像。  相似文献   

14.
基于粒子群和模糊熵的图像分割算法用于各种图像分割时,由于基本粒子群算法存在易陷入局部最优以及过早收敛的缺点,使得该算法难以得到理想的分割效果。针对此问题,提出了一种基于小波变异粒子群和模糊熵的图像分割算法,利用小波变异粒子群来搜索使模糊熵最大的参数值,得到模糊参数的最优组合,进而确定图像的分割阈值。通过与其他两种粒子群算法的分割结果进行比较,表明该算法取得了令人满意的分割结果,算法运算时间较小,具有很好的自适应性。  相似文献   

15.
把粒子群算法应用到多阈值图像分割中,结合已有的模糊C-均值聚类法提出了一种基于模糊技术的粒子群优化多阈值图像分割算法。FCM聚类算法是一种局部搜索算法,对初始值较为敏感,容易陷入局部极小值而不能得到全局最优解。PSO算法是一种基于群体的具有全局寻优能力的优化方法。将FCM聚类算法和PSO算法结合起来,将FCM聚类算法的聚类准则函数作为PSO算法中的粒子适应度函数。仿真实验表明新算法在最大熵评判准则下能够得到最优阈值。  相似文献   

16.
针对网络拥塞现象,基于粒子群优化(PSO)提出了一种新的主动队列管理算法RQQM。该算法首先通过粒子群优化和变异算子来计算当前队列长度,并且基于到达速率和当前队列长度给出了丢包策略和丢包概率。最后,以实际数据将RQQM算法与基于速率的早期检测公平队列管理(RFED)算法和自适应主动队列管理(ABLUE)算法进行仿真实验,
发现丢包率受利用率和缓冲区影响较大;同时实验结果表明RQQM算法的公平性远远优于其他两种算法,其平均丢包率降低至12.21%。  相似文献   

17.
针对水库群供水优化调度问题,提出了一种带差分进化的双层多种群粒子群算法(DE-TMPSO)。该算法实现粒子群优化算法的群体拓展和双并行运行机制,针对性地提高粒子群算法的全局搜索能力,同时采用不同粒度的多子群并行机制、种群间的双向最优信息流动以及引入差分进化策略也提高了该算法的局部搜索能力,在一定程度上避免了"早熟"现象的发生,具有较好的稳定性,收敛速度也得到了提高。该算法应用于我国南方某流域的水库群供水优化调度问题中,调度结果合理,为求解高维、复杂的水库群供水优化调度提供了新的思路和方法。  相似文献   

18.
一种求解多峰函数优化问题的量子行为粒子群算法   总被引:2,自引:2,他引:2  
赵吉  孙俊  须文波 《计算机应用》2006,26(12):2956-2960
介绍了一种利用量子行为粒子群算法(QPSO)求解多峰函数优化问题的方法。为此,在QPSO中引进一种物种形成策略,该方法根据群体微粒的相似度并行地分成子群体。每个子群体是围绕一个群体种子而建立的。对每个子群体通过QPSO算法进行最优搜索,从而保证每个峰值都有同等机会被找到,因此该方法具有良好的局部寻优特性。将基于物种形成的QPSO算法与粒子群算法(PSO)对多峰优化问题的结果进行比较。对几个重要的测试函数进行仿真实验结果证明,基于物种形成的QPSO算法可以尽可能多地找到峰值点,峰值收敛性能优于PSO。  相似文献   

19.
针对传统粒子群优化(PSO)算法寻优精度不高和易陷入局部收敛区域的缺点,引入混沌算法和云模型算法对PSO算法的进化机制进行优化,提出混沌云模型粒子群优化(CCMPSO)算法。在算法处于收敛状态时将粒子分为优秀粒子和普通粒子,应用云模型算法和优秀粒子对收敛区域局部求精,发掘全局最优位置;应用混沌算法和普通粒子对收敛区域以外空间进行全局寻优,探索全局最优位置。应用特征根法对CCMPSO算法的收敛性进行分析,并通过仿真实验证明,CCMPSO算法的寻优性能优于其他常用PSO算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号