共查询到20条相似文献,搜索用时 15 毫秒
1.
Probe-based automatic target recognition in infrared imagery 总被引:2,自引:0,他引:2
A probe-based approach combined with image modeling is used to recognize targets in spatially resolved, single frame, forward looking infrared (FLIR) imagery. A probe is a simple mathematical function that operates locally on pixel values and produces an output that is directly usable by an algorithm. An empirical probability density function of the probe values is obtained from a local region of the image and used to estimate the probability that a target of known shape is present. Target shape information is obtained from three-dimensional (3-D) computer-aided design (CAD) models. Knowledge of the probe values along with probe probability density functions and target shape information allows the likelihood ratio between a target hypothesis and background hypothesis to be written. The generalized likelihood ratio test is then used to accept one of the target poses or to choose the background hypothesis. We present an image model for infrared images, the resulting recognition algorithm, and experimental results on three sets of real and synthetic FLIR imagery. 相似文献
2.
3.
高分辨一维距离像是雷达自动目标识别的重要特征之一,它对目标姿态变化很敏感,只有通过进一步处理才能够实现有效的目标识别。针对距离像的这种姿态敏感性,本文提出了一种基于混合因子建模的雷达目标识别框架,它通过对从各个姿态角下获得的目标一维距离像出发构建目标的距离像概率生成模型,然后利用该模型通过比较条件概率大小的方法判别目标类属。对5类飞机数据的实验结果表明该框架对任意姿态角距离像的目标识别有很好性能。 相似文献
4.
This paper presents a method for detecting and classifying a target from its foveal (graded resolution) imagery using a multiresolution neural network. Target identification decisions are based on minimizing an energy function. This energy function is evaluated by comparing a candidate blob with a library of target models at several levels of resolution simultaneously available in the current foveal image. For this purpose, a concurrent (top-down-and-bottom-up) matching procedure is implemented via a novel multilayer Hopfield (1985) neural network. The associated energy function supports not only interactions between cells at the same resolution level, but also between sets of nodes at distinct resolution levels. This permits features at different resolution levels to corroborate or refute one another contributing to an efficient evaluation of potential matches. Gaze control, refoveation to more salient regions of the available image space, is implemented as a search for high resolution features which will disambiguate the candidate blob. Tests using real two-dimensional (2-D) objects and their simulated foveal imagery are provided. 相似文献
5.
6.
对同类目标畸变不变的正确识别率与不同类目标分类误识别率是衡量一个自动目标识别 (ATR)系统的两个最重要性能指标。但在实际应用中 ,ATR系统所获取的外场的目标与背景总是处于随时间不断变化的条件下 ,与系统所存储的参考目标通常都不会一致 ,从而导致相关识别SNR劣化。特别对于多目标识别与不同类目标的区分 ,常规的相关门限判决方法会造成很大的误识别 ,大大影响了ATR系统的识别可靠性。本文采用人工神经网络 (ANN)与模糊逻辑技术 ,对相关信号与噪声进行实时数字后处理 ,通过对信号与噪声强度分布等高线而不仅仅是强度的识别 ,大大提高了ATR系统的识别可靠性 ,改善了识别效率。 相似文献
7.
实现图像末制导导弹发射后不管和远程精确打击,自动目标识别的工程化应用是关键技术。概述了国内外精确制导武器自动目标识别的发展历程、识别方法、技术水平和应用效果等现状,分析了基于目标特征和模板匹配的识别方法与应用场景,指出了两类经工程化验证有效的自动目标识别方法,梳理了任务规划、主要执行内容、规划质量对不同识别方法的影响等自动目标识别流程。为了适应未来精确制导武器智能化发展需求,深度学习识别技术工程化应用成为了新趋势,针对解决好深度学习算法效率与应用精度的平衡问题,重点分析了网络剪枝、权值量化、低秩近似和知识蒸馏等实时加速推理关键技术;针对网络模型训练,提出了有效解决训练样本不足或军事目标样本获取困难等问题的思路。随着多波段、多模复合制导技术的广泛应用,信息融合为目标识别的工程化应用提供了新技术途径。如何适应各种复杂场景和人工主动干扰是图像末制导面临的重大挑战,阐述了在干扰条件下目标识别鲁棒性,是自动目标识别技术在图像末制导应用中需要迫切解决的工程化问题。 相似文献
8.
9.
深度卷积神经网络(DCNN)可自动学习目标层次化特征,在合成孔径雷达(SAR)自动目标识别(SAR-ATR)领域具有广泛应用前景。首先,介绍了DCNN的基本原理以及DCNN在光学图像上的应用与发展;然后,介绍了SAR-ATR的基本概念,综述了DCNN在SAR图像语义特征提取、片段级SAR图像分类、基于数据增强技术的SAR自动目标识别、异质图像变化检测等领域中的前沿应用研究及代表性网络架构;最后,总结并讨论了DCNN在SAR-ATR应用中存在的参数设置经验化、算法泛化能力较弱等不足,并对未来研究方向进行了展望。 相似文献
10.
There has been progress in improving speech recognition using a tightly-coupled modality such as lip movement; and using additional input interfaces to improve recognition of commands in multimodal human? computer interfaces such as speech and pen-based systems. However, there has been little work that attempts to improve the recognition of spontaneous, conversational speech by adding information from a loosely?coupled modality. The study investigated this idea by integrating information from gaze into an automatic speech recognition (ASR) system. A probabilistic framework for multimodal recognition was formalised and applied to the specific case of integrating gaze and speech. Gaze-contingent ASR systems were developed from a baseline ASR system by redistributing language model probability mass according to the visual attention. These systems were tested on a corpus of matched eye movement and related spontaneous conversational British English speech segments (n = 1355) for a visual-based, goal-driven task. The best performing systems had similar word error rates to the baseline ASR system and showed an increase in keyword spotting accuracy. The core values of this work may be useful for developing robust speech-centric multimodal decoding system functions. 相似文献
11.
采用TMS320F2812数字信号处理器作为系统核心处理器件,辅以必要的外围电路实现声信号的采集、处理、特征提取及目标识别。根据典型目标声信号的特性,运用小波变换理论对其进行阈值滤波处理;利用小波分析能够反映信号时域和频域局部特性的优点,采用小波变换实现子空间能量特征提取;实现了声信号的快速处理与识别。将此系统应用于典型的车辆目标进行识别,取得了满意的识别效果。 相似文献
12.
Renato De Mori 《Signal processing》1979,1(2):95-123
The paper reviews the work done in speech recognition and understanding, mostly in the years 1976–1977. The attention is focussed on problems of system organization, use and representation of syntax and semantics, control strategies, lexical classification, extraction and emission of hypotheses about acoustic, phonetic and phonemic features. 相似文献
13.
Diffraction-pattern sampling for automatic pattern recognition 总被引:3,自引:0,他引:3
14.
Structural methods in automatic speech recognition 总被引:1,自引:0,他引:1
《Proceedings of the IEEE. Institute of Electrical and Electronics Engineers》1985,73(11):1625-1650
15.
通信信号自动识别方法 总被引:7,自引:0,他引:7
通信信号的自动识别是通信信号处理的一个重要研究课题,近年来随着数字信号处理技术的发展,通信信号的调制方式增加了,对通信信号的自动识别提出了更高的要求.许多新的方法应用于该领域,本文对近年来这个领域的研究作了综合评述,讨论了其中存在的问题,并指出了今后的发展方向. 相似文献
16.
17.
18.
This paper introduces two algorithms for analog and digital modulations recognition. The first algorithm utilizes the decision-theoretic approach in which a set of decision criteria for identifying different types of modulations is developed. In the second algorithm the artificial neural network (ANN) is used as a new approach for the modulation recognition process. Computer simulations of different types of band-limited analog and digitally modulated signals corrupted by band-limited Gaussian noise sequences have been carried out to measure the performance of the developed algorithms. In the decision-theoretic algorithm it is found that the overall success rate is over 94% at the signal-to-noise ratio (SNR) of 15 dB, while in the ANN algorithm the overall success rate is over 96% at the SNR of 15 dB 相似文献
19.
迁移学习技术可以利用经验信息辅助当前任务,已在计算机视觉和语音识别领域得到广泛应用,但在电磁领域还没有取得明显的成就.电磁环境变化速度快,源数据或分类器模型在新环境中性能会显著下降,重新训练不仅需要大量的数据且费时费力.迁移学习技术与电磁目标识别任务十分相关,本文采用实测电磁目标数据集,探索迁移学习在解决电磁目标小样本... 相似文献
20.
Miller M.I. Grenander U. OSullivan J.A. Snyder D.L. 《IEEE transactions on image processing》1997,6(1):157-174
Proposes a framework for simultaneous detection, tracking, and recognition of objects via data fused from multiple sensors. Complex dynamic scenes are represented via the concatenation of simple rigid templates. The variability of the infinity of pose is accommodated via the actions of matrix Lie groups extending the templates to individual instances. The variability of target number and target identity is accommodated via the representation of scenes as unions of templates of varying types, with the associated group transformations of varying dimension. We focus on recognition in the air-to-ground and ground-to-air scenarios. The remote sensing data is organized around both the coarse scale associated with detection as provided by tracking and range radars, along with the fine scale associated with pose and identity supported by high-resolution optical, forward looking infrared and delay-Doppler radar imagers. A Bayesian approach is adopted in which prior distributions on target scenarios are constructed via dynamical models of the targets of interest. These are combined with physics-based sensor models which define conditional likelihoods for the coarse/fine scale sensor data given the underlying scene. Inference via the Bayes posterior is organized around a random sampling algorithm based on jump-diffusion processes. New objects are detected and object identities are recognized through discrete jump moves through parameter space, the algorithm exploring scenes of varying complexity as it proceeds. Between jumps, the scale and rotation group transformations are generated via continuous diffusions in order to smoothly deform templates into individual instances of objects. 相似文献