首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
以KMnO4和Mn(OAc)2·4 H2O为原料,经液相沉淀法制备α-MnO2,通过添加不同浓度的氯化钾调节α-MnO2孔道内支撑钾离子的含量.该方法有效地提高了α-MnO2晶体中钾离子含量(质量分数从1.70%提高到2.99%).随着钾离子含量增大,尽管α-MnO2比表面积呈下降趋势(从253 m2/g下降到183 ...  相似文献   

2.
通过简单的化学法首次合成了均一的α-MnO2类仙人球状纳米球.通过X射线衍射分析(XRD),扫描电镜(SEM)和热重分析(TG)对产品进行了表征.XRD结果显示产品是无定形α-MnO2. SEM测试表明产品为纳米类仙人球形貌.合成产品的最佳制备条件为:反应温度60℃,反应时间3h,KMnO4和H2C2O4配比是2∶3.把产品在400℃下恒温热处理2h后,比电容高达265 F/g.这可能归因于它有着独一无二的类仙人球状纳米结构.  相似文献   

3.
《电池》2015,(3)
以KMnO4和Mn Cl2·4H2O为原料,采用低温固相法制备锌离子电池正极材料α-MnO2,通过XRD、透射电子显微镜(TEM)和电池测试,研究KMnO4与MnCl2·4H2O物质的量比对材料结构及电池性能的影响。所得材料为直径7~10 nm、长度50~120 nm的纳米级棒状α-MnO2。KMnO4与MnCl2·4H2O物质的量比为2∶3时,制备的锌离子电池以100 mA/g的电流在1.0~2.0V循环,比容量最高为143 m Ah/g,第50次循环的容量保持率为76.8%,库仑效率保持在90%以上。随着KMn O4与MnCl2·4H2O物质的量比的提高,材料的结晶性提高,纳米棒的直径和长径比减小,有利于提高电池的比容量。  相似文献   

4.
化学共沉淀法制备超级电容器电极材料MnO2   总被引:12,自引:0,他引:12  
彭波  刘素琴  黄可龙  吴弘 《电源技术》2005,29(8):531-534
采用化学共沉淀法制得无定形水合MnO2粉体用于超级电容器电极材料。X射线衍射(XRD)分析结果表明,该样品主晶相为a-MnO2·nH2O。以该粉体作为活性物质制成电极,考察了其电化学性能。循环伏安分析表明,电极在0.5mol·L-1Na2SO4溶液中,-0.2~0.9V(vs.SCE)电位范围内,表现出良好的电容性能,50次循环后其比容量稳定在160F·g-1。以5mA·cm-2电流对MnO2电极做恒流充放电测试,其比容量可达180.2F·g-1,经100次循环,比容量保持率在93%以上。  相似文献   

5.
超级电容器用纳米γ-MnO2制备及性能   总被引:6,自引:4,他引:2  
罗旭芳  张雪纯  王先友  汪形艳 《电池》2004,34(5):334-336
采用醋酸锰和柠檬酸沉淀反应法制备锰配合物,经热分解和酸处理,得到纳米级γ-MnO2材料.用IR、XRD、SEM等方法对样品进行了表征,发现:所制备的γ-MnO2是由30~70 nm的微粒组成.用循环伏安法研究得出:不同γ-MnO2和活性炭配比的复合电极在0.5 mol/L Na2SO4、2.0 mol/L(NH4)2SO4、1.0 mol/L KCl等电解液中的比电容.结果表明:含40%、50%(质量比)γ-MnO2的电极在2.0 mol/L(NH4)2SO4溶液中的比电容较大,最大值为109.76 F/g.  相似文献   

6.
赵明  王晓芳  高娇阳  刘伟  刘贵昌  宋朝霞 《电源技术》2012,36(9):1313-1315,1322
以KMnO4和MnCl2·4 H2O为原料,采用液相化学沉淀法合成纳米结构MnO2电极材料,并添加一定量的K2Cr2O7 对其进行改性.通过X射线衍射(XRD),扫描电子显微镜(SEM)等手段对MnO2的结构形貌进行表征;利用循环伏安法和恒流充放电等方法研究了MnO2在1 mol/L KOH电解液中的电容行为.测试结果表明,K2Cr2O7的存在导致了MnO2由γ-MnO2向α-MnO2晶型的转变以及MnO2纳米棒的形成.MnO2纳米棒的直径约为80 nm,长度约为0.5~2 μm,并且MnO2电极材料的晶化程度和电化学性能都得到了提高.当K2Cr2O7添加量为1O%(与KMnO4的质量比)时,在0.3A/g和1 A/9电流密度下,电极比容量分别为271 F/g和199 F/g,大约是未添加K2Cr2O7条件下制备的电极的2倍.Cr掺杂MnO2纳米棒表现出优异的高倍率性能.  相似文献   

7.
以过硫酸钾(K2s2O8)和硫酸锰(MnSO4· H2O)为反应起始原料,采用液相法制备出了纳米MnO2.采用X射线衍射(XRD)和扫描电镜(SEM)对样品进行结构与形貌分析,并通过循环伏安、恒电流充放电对二氧化锰进行电化学性能测试.研究结果表明,采用液相沉淀法,在pH等于1.0,反应温度为60℃,反应时间为22 h的条件下制备出的二氧化锰为纯四方晶系α-MnO2.循环伏安测试表明二氧化锰在较小的扫描速率下有较好的电容性能.恒电流充放电测试表明二氧化锰有良好的电容性能.  相似文献   

8.
机械化学法制备超级电容器材料MnO2   总被引:1,自引:1,他引:0  
张莹  张伟  刘开宇 《电池》2007,37(6):441-443
采用机械化学法制备了MnO2粉末,用XRD、SEM和BET等方法对产物的结构与表面形貌进行研究,用循环伏安、恒流充放电等方法对产物的电化学性能进行测试.产物为微米级(5~10μm)的单相弱结晶α-MnO2,比表面积为241 m2/g.MnO2电极比电容下降的原因有两种:前60次循环中,是双电层不稳定引起的;经过780次循环后,是电化学惰性物质Mn3O4生成引起的.MnO2电极在200mA/g和500mA/g的电流下,首次循环的比电容分别为524 F/g和404 F/g.  相似文献   

9.
用异丙醇作为添加剂,采用水热法,在添加1 mL异丙醇的水溶液中制备了MnO2,并与在纯水中制备的MnO2进行比较,通过X射线衍射(XRD)、扫描电镜(SEM)对样品的结构、形貌进行了表征,结果显示,在异丙醇水溶液中合成的样品具有更高的结晶程度,为α-MnO2和γ-MnO2的混合相,添加异丙醇后改善了样品的微观颗粒形貌,提高了颗粒的分散度.电化学测试表明,添加异丙醇后样品的电化学性能得到明显改善,具有更好的循环伏安性能和更小的电化学阻抗,其在2 mA/cm2电流密度下放电比电容达到289.56 F/g.  相似文献   

10.
循环伏安沉积制备钽基氧化钌电极   总被引:1,自引:0,他引:1  
徐艳  王本根  王清华  刘宏宇 《电池》2007,37(3):187-189
研究了用循环伏安法在钽基体上制备电化学电容器用的氧化钌(记为RuOx·nH2O).实验在三电极系统下进行,先驱液钌化物中通过恒电流/恒电位仪产生循环伏安电位差,发生氧化还原变化,使水合钌化物(RuCl3·nH2O)逐渐沉积在工作电极基体钽基体上,逐渐转变成氧化钌(RuOy·nH2O).研究证明,循环伏安法制备的水合氧化钌在不同电压、不同扫描速度下电容性能较好,不同充放电电流下的充放电性能也较佳.  相似文献   

11.
通过液相共沉淀法制备了石墨烯/镍掺杂二氧化锰(MnO2)复合材料。用XRD、SEM分析复合材料的微观结构和表面形貌,用恒流充放电、循环伏安及交流阻抗研究复合材料的电化学性能。镍掺杂的Mn O2为α-MnO2,粒径约为50 nm。复合材料具有良好的电化学性能,在电解液2 mol/L KOH中0.5 A/g、-0.2~0.8 V时的比电容达到319 F/g,循环伏安测试结果表明,电化学可逆性较好。  相似文献   

12.
采用Hummers改进法制备氧化石墨烯,分别选取水合肼、硼氢化钠、铝粉对所制备氧化石墨烯进行还原处理,用红外光谱(FTIR)、X射线衍射仪(XRD)、射电子显微镜(TEM)、原子力显微镜(AFM)、X射线电子能谱(XPS)对样品进行了结构、谱学、形貌表征,用高性能电池检测系统和电化学工作站对样品进行充放电测试、循环测试、CV测试和EIS测试分析。结果表明,所制备的氧化石墨烯分布相对均一、团聚现象较弱、片层厚度为1.107 nm、片层层数约为1~2层,C/O比为1.6。经过三种还原方法处理的石墨烯的含氧官能团在氧化石墨烯基础上都出现明显下降,C/O质量比分别提高到6.4、5.3、3.7。对三种不同还原方法制备的石墨烯(rGO/N_2H_4·H_2O、rGO/NaBH_4、rGO/AlP)进行电化学性能研究,导电性呈现rGO/N_2H_4·H_2OrGO/Na BH_4rGO/AlP趋势。导电性高,所制得的电池反应活性较高、极化较低,进而表现出较好的倍率和循环性能,GO/N_2H_4·H_2O、rGO/NaBH_4和rGO/AlP的0.2 C放电比容量分别为158.4、153.3和144.8 mAh/g;其中rGO/N_2H_4·H_2O的导电性最高,表现出更好的倍率性能和循环性能,1 C倍率保持95.5%、2 C倍率保持仍能达到90.1%,0.2 C@RT 800次循环后,容量保持率仍能达到95.3%,而rGO/NaBH_4、rGO/AlP分别为91.1%和89.6%,相对较低。  相似文献   

13.
陈一维  张颖  汪大云  韩恩山 《电池》2011,41(4):213-215
用凝胶—溶胶法,按n( LiV3O8)∶n[LiNiO2(或LiMn2O4)]=12∶1制备了掺杂Ni、Mn的LiV3O8,用XRD、循环伏安和恒流充放电测试对样品进行了分析.掺杂未对样品的晶体结构产生影响;掺杂Mn的样品在1.8~3.8V以0.1C循环,首次放电比容量为387.9 mAh/g,比未掺杂样品的299.9...  相似文献   

14.
闫芳  叶乃清  田华  钟卓洪 《电源技术》2012,36(1):49-51,78
以LiNO3、Ni(CH3COO)2·4 H2O、Co(CH3COO)2·4 H2O和Mn(CH3COO)2·4 H2O为原料,采用共沉淀-燃烧法在空气中合成了LiNi1/3Co1/3Mn1/3O2.采用原子吸收光谱仪(AAS)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)和充放电测试仪对合成产物的成份、形貌、结构和性能进行了表征.实验结果表明,所合成的正极材料LiNi1/3Co1/3Mn1/3O2结晶良好,粒度适中,大小均匀,具有α-NaFeO2型层状有序结构和良好的电化学性能,在2.5~4.35 V电压区间充放电,其首次放电比容量达到169.05 mAh/g,第50次循环的放电比容量仍有152.83 mAh/g.在深度充电状态下具有良好的结构稳定性.  相似文献   

15.
层状正极材料Li[Li0.2Ni0.2Mn0.6]O2的研究   总被引:1,自引:0,他引:1  
甘朝伦  詹晖  周运鸿 《电池》2005,35(3):169-170
以LiAc·H2O、Ni(Ac)2·4H2O和Mn(Ac)2·4H20为原料,制备了锂离子电池层状正极材料Li[Li0.2Ni0.2Mn0.6]O2.XRD分析表明:其晶体结构为典型的α-NaFeO2型层状结构.该材料的初始容量大于220mAh/g,100次循环后,仍大于210 mAh/g,展示了较高的比容量和良好的循环性.  相似文献   

16.
用共沉淀法制备了固溶体正极材料Li[Li0.2Mn0.54Co0.13Ni0.13]O2,并用偏铝酸锂(α-LiAlO2)进行包覆改性.XRD和场发射扫描电子显微镜(FESEM)测试表明:包覆前后的材料均属于α-NaFeO2六方层状结构,R3m空间群;包覆后的样品颗粒表面形成了一层不均匀絮状包覆物α-LiAlO2.包覆量为3%的样品性能较好:以低电流(0.05 C)在2.0~4.8 V循环,首次放电比容量达273.0 mAh/g;当电流提高到1.00C时,放电比容量为173.2 mAh/g.倍率性能的提高,得益于包覆样品具有的较低的界面电阻与反应电阻,电化学阻抗谱(EIS)测试结果证明了这一点.  相似文献   

17.
采用离子交换法制备V2O5·nH2O,与Cu2O粉末通过软化学反应合成了CuV2O6.利用TG、XRD、XPS和SEM等方法对产物进行了分析,采用恒流充放实验进行了电化学性能测试.形成CuV2O6所需的焙烧温度较低,所制备的CuV2O6颗粒细小均匀,在350℃下制备的CuV2O6的首次放电比容量为355mAh/g(30mA/g).非现场XRD和EIS谱的结果表明,单质Cu在放电过程中的析出及由此导致CuV2O6的结构不可逆性,是容量衰减的根源.  相似文献   

18.
巩桂英  徐宇虹  马萍  张宝宏 《电池》2007,37(3):220-222
用柠檬酸络合法制备了中间相炭微球(MCMB)改性的LiMn2O4,用XRD测试进行了研究.通过循环伏安测试,分析了MCMB加入量对样品性能的影响,用恒流充放电测试进行了验证.MCMB的加入减小了样品的晶胞参数,提高了放电平台电位,增大了峰电流.MCMB的添加量为3%时,样品的首次放电比容量为130.56 mAh/g,比纯LiMn204提高了17.8%.  相似文献   

19.
β-MnO2的改性及其放电行为的研究   总被引:2,自引:0,他引:2  
陈震  陈志华  陈日耀  郑曦  陈玉峰  林智虹 《电池》2003,33(6):355-357
以有机溶剂THF热生长技术对β-MnO2进行改性处理.XRD分析结果表明:改性后β-MnO2/THF样品在晶面指数为(102)和(110)面的d值增大;热重分析结果表明:在210℃之前的失重增大;放电结果表明:改性后β-MnO2/THF样品的放电性能有显著提高.  相似文献   

20.
以Fe(NO_3)_3·9H_2O、LiNO_3、NH_4H_2PO_4和石墨烯为原料,用溶胶-凝胶法制备磷酸铁锂(LiFePO_4)材料和LiFePO_4/石墨烯复合材料。用XRD、拉曼光谱、SEM、透射电镜(TEM)及充放电测试,研究样品的晶体结构、形貌和电化学性能。样品具有典型的橄榄石结构,复合的石墨烯能减小LiFePO4的颗粒尺寸,石墨烯与LiFePO_4能很好地融合在一起。LiFePO_4/石墨烯复合材料的电化学性能较好:在2.0~3.8V循环,0.2C和1.0C首次放电比容量分别为164mAh/g和153mAh/g,较LiFePO_4提高了7mAh/g。1.0C第100次循环的放电比容量为152mAh/g,容量保持率为99%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号