首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anaerobic digestion (AD) plants are highly efficient wastewater treatment processes with possible energetic valorisation. Despite these advantages, many industries are still reluctant to use them because of their instability in the face of changes in operating conditions. To the face this drawback and to enhance the industrial use of anaerobic digestion, one solution is to develop and to implement knowledge base (KB) systems that are able to detect and to assess in real-time the quality of operating conditions of the processes. Case-based techniques and heuristic approaches have been already tested and validated on AD processes but two major properties were lacking: modularity of the system (the knowledge base system should be easily tuned on a new process and should still work if one or more sensors are added or removed) and uncertainty management (the assessment of the KB system should remain relevant even in the case of too poor or conflicting information sources). This paper addresses these two points and presents a modular KB system where an uncertain reasoning formalism is used to combine partial and complementary fuzzy diagnosis modules. Demonstration of the interest of the approach is provided from real-life experiments performed on an industrial 2,000 m3 CSTR anaerobic digester.  相似文献   

2.
3.
The effect of returning solids to the digester, after one of three thickening processes, on volatile solids reduction (VSR) and gas production was investigated. Three different thickening methods were compared: centrifugation, flotation and gravitational sedimentation. The amount and activity of retained biomass in thickened recycled sludge affected the efficiency of digestion. Semi-continuous laboratory digesters were used to study the influence of thickening processes on thermophilic sludge digestion efficiency. Centrifugation was the most effective method used and caused an increase of VSR from 43% (control) up to 70% and gas generation from 0.40 to 0.44 L g(-1) VS. Flotation and gravitational sedimentation ways of thickening appeared to be less effective if compared with centrifugation. These methods increased VSR only by up to 65 and 51%, respectively and showed no significant increase of gas production. The dewatering capacity of digested sludge, as measured by its specific resistance to filtration, was essentially better for the sludge digested in the reactors with centrifugated and settled recycle. The VS concentration of recycle (g L(-1)), as reflecting the amount of retained biomass, appeared to be one of the most important factors influencing the efficiency of sludge digestion in the recycling technology.  相似文献   

4.
Anaerobic digestion (AD) is the preferred option to stabilize sludge. However, the rate limiting step of solids hydrolysis makes it worth modifing the conventional mesophilic AD in order to increase the performance of the digester. The main strategies are to introduce a hydrolysis pre-treatment, or to modify the digestion temperature. Among the different pre-treatment alternatives, the thermal hydrolysis (TH) at 170 degrees C for 30 min, and the ultrasounds pre-treatment (US) at 30 kJ/kg TS were selected for the research, while for the non-conventional anaerobic digestion, the thermophilic (TAD) and the two-stage temperature phased AD (TPAD) were considered. Four pilot plants were operated, with the same configuration and size of anaerobic digester (200 L, continuously fed). The biogas results show a general increase compared to the conventional digestion, being the highest production per unit of digester for the process combining the thermal pre-treatment and AD (1.4 L biogas/L digester day compared to the value of 0.26 obtained in conventional digesters). The dewaterability of the digestate became enhanced for processes TH + AD and TPAD when compared with the conventional digestate, while it became worse for processes US + AD and TAD. In all the research lines, the viscosity in the digester was smaller compared to the conventional (which is a key factor for process performance and economics), and both thermal pre-treatment and thermophilic digestion (TAD and TPAD) assure a pathogen free digestate.  相似文献   

5.
Toxic effect of pharmaceuticals on methanogenesis.   总被引:1,自引:0,他引:1  
Pharmaceuticals present in sewage may inhibit the biological processes in a sewage treatment plant. In this work, the toxic-effect of six pharmaceuticals (carbamazepine, sulfamethoxazole, propranolol hydrochloride, diclofenac sodium, ofloxacin and clofibric acid) on the anaerobic digestion process is assessed. Acetoclastic methanogenes are the most sensitive group of microorganisms participating in the anaerobic digestion process. Appropriate toxicity tests for these microorganisms were then based on assessing the impact of pharmaceuticals on the specific methanogenic activity (SMA) of the anaerobic biomass. The toxicity was expressed by the IC80 and IC50 values, i.e. the concentration at which bioactivity was 80% and 50% of the control, respectively. Results showed that the pharmaceuticals tested caused a mild inhibition to the methanogenes in most cases, related directly to the tendency of the compounds to adsorb on the anaerobic biomass.  相似文献   

6.
Biological treatment processes including anaerobic digestion (biogasification) and composting are increasingly being considered by waste management officials and planners as alternatives for managing the mainly organic residues of municipal solid wastes (MSW). The integrated waste management model which is based upon the application of life-cycle analysis was employed to compare the environmental burdens of landfilling, composting and anaerobic digestion of MSW at a mid-sized Canadian community. Energy consumption (or recovery), residue recoveries and emissions to air and water were quantified. Scenario comparisons were analyzed to demonstrate that the environmental burdens associated with anaerobic digestion are reduced in comparison with the alternative options. The major benefit occurs as a result of the electricity produced from burning the biogas and then supplying the 'green power' to the local electrical grid.  相似文献   

7.
A wastewater-treatment flowsheet was developed to integrate uniquely designed biological processes with physical-chemical unit processes, allowing conversion of the organic carbon in the wastewater to methane, the removal and recovery of phosphorus and nitrogen from the wastewater, and the production of water suitable for reuse. In the flowsheet, energy is derived from the wastewater by first shunting a large fraction of the organic carbon in the wastewater to a solids slurry which is treated via anaerobic digestion. The anaerobic digestion system consists of focused pulsed (FP) pretreatment coupled to anaerobic membrane bioreactors (MBRs). Computer modelling and simulation results are used to optimize design of the system. Energy generation from the system is maximized and costs are reduced by using modest levels of recycle flow from the anaerobic MBRS to the FP pretreatment step.  相似文献   

8.
The objective of the present work was to evaluate the effect of hydraulic retention time (HRT) on hydrolysis and acidogenesis for the pretreatment processes: acid phase digestion (APD) and autothermal thermophilic aerobic digestion (ATAD) using blended municipal sludge. The effect of the different pretreatment steps on mesophilic anaerobic digestion (MAD) was evaluated in terms of methane yield, keeping the operating conditions of the MAD the same for all systems. Best operating conditions for both APD and ATAD were observed for 2.5 d HRT with high total volatile fatty acids (tVFA), and the highest methane yield observed for MAD. No significant difference was observed between the two processes in terms of overall volatile solids (VS) reduction with same total HRT. The autothermal process produced heat of 14,300 J/g VS removed from hydrolytic and acetogenic reactions without compromising overall methane yields when the HRT was 2.5 d or lower and the total O2 used was 0.10 m3 O2/g VS added or lower. However, the process needs the input of oxygen and engineering analysis should balance these differences when considering the relative merits of the two pretreatment processes. This is the first study of its kind directly comparing these two viable pretreatment processes with the same sludge.  相似文献   

9.
The effect of a variable stoichiometry of the carbohydrate fermentation process in the IWA Anaerobic Digestion Model No.1 (ADM1) is investigated. Most existing anaerobic digestion models including ADM1 consider a fixed-stoichiometry for their conversion processes. The ADM1 model was first transformed into an only mol based model to remove some errors derived from the mixed COD-mol based standard model and to allow for implementation of the variable stoichiometry. Consequently, the values of the butyrate and acetate catabolic yields of carbohydrate fermentation are made dependent on the hydrogen concentration and the reactor pH according to the predictions of a recently developed mixed culture fermentation model based on thermodynamic considerations. The simulation results obtained showed no significantly different responses in terms of effluent quality and system robustness between the standard and the variable stoichiometry ADM1 under overload conditions, and for both single- and two-step anaerobic digestion configurations. This behaviour is explained by the non-limiting acetogenic activity that compensated for the changes in the acidogenic products, typical behaviour for serial processes close to equilibrium. Based on the results obtained, thermodynamic rather than kinetic control for these conversions is suggested. Depending on the objectives to be met, lumping of carbohydrate fermenters and oxidative acetogens into a single biomass group with a variable stoichiometry is proposed for further consideration.  相似文献   

10.
The hybrid anaerobic solid-liquid (HASL) system is a modified two-phase anaerobic digester for food waste treatment. To enhance the performance of anaerobic digestion in the HASL system, thermal pre-treatment (heating at 150 degrees C for 1 h) and freezing/thawing (freezing for 24 h at-20 degrees C and then thawing for 12 h at 25 degrees C) were proposed for food waste pre-treatment before the anaerobic digestion. Both processes were able to alter the characteristics and structure of food waste favoring substance solubilization, and hence production of methane. However, there was no net energy gain when the energy required by the pre-treatment processes was taken into account.  相似文献   

11.
Winery wastewaters are high strength, and readily biodegradable, making them perfect for application of anaerobic digestion. However, inherent buffering against pH changes also requires some process knowledge and monitoring. They are therefore an important target for anaerobic process control. This has had limited application, but is emerging as an important research and development area. In this paper, we evaluate the use of model-based control analysis of a heavily loaded vinasse-fed reactor. Two controllers--both proportional-integral (PI)--on total volatile fatty acids (VFA) (< 500 mg/L), alkalinity (VFA/Total Alkalinity < 0.2) were evaluated in a fitted model, against the actual control mechanism used, which was model-based adaptive control. The two controllers were both less aggressive than the adaptive controller, producing less gas overall, but also using more caustic for pH control. The controllers were also evaluated against their ability to deal with noise, as PI controllers are relatively poor for controlling non-linear processes. The VFA controller was very poor with noise added, proving difficult to tune, and oscillatory. The alkalinity controller was effective with moderate detuning. This emphasizes the need to use effective controller inputs, when applying simple, linear controllers. Overall, use of a model was an effective method to evaluate the different controllers in a competitive way, in a standardized environment.  相似文献   

12.
One of the most crucial processes in biosolids management is stabilisation, which is typically accomplished using either anaerobic or aerobic digestion processes. Although there are many advantages to both of these methods--such as reduction of volatile organic matter, pathogen content, and offensive odours--one common disadvantage is that digested biosolids exhibit poor dewaterability characteristics. The deterioration in dewaterability of digested biosolids leads to increases in polymer requirements, connoting higher conditioning costs. Many studies have examined this phenomenon based on conventional filterability tests such as capillary suction time and specific resistance to filtration. However, these test methods are limited in their ability to predict full-scale dewatering behaviour (particularly in centrifugation), and do not regard handling properties as being important for sludge transport. For this purpose, new rheometric methods may assist in predicting sludge behaviour, potentially allowing optimisation of stabilisation and conditioning processes relative to the desired sludge properties. This paper investigates the possible utility of these methods. Classical methods for characterising biosolids, such as filtration tests, are compared with yield stress values and other rheological properties as determined using the steady-shear rate sweep test. The rheological behaviours are compared for different sludge types, including raw and polymer conditioned thermophilic anaerobically, mesophilic anaerobically, and mesophilic aerobically digested biosolids. The paper demonstrates the determination of specific energy values associated with breakdown of the flocculated matrix. Robust modelling approaches are employed to optimise the conditioning of the digested samples, and to shed light on commonly used rheological models such as Bingham, Herschel-Bulkley, and Ostwald equations.  相似文献   

13.
14.
The potential of a mesophilic-thermophilic-mesophilic anaerobic digestion system was investigated with respect to improvement of both digestion and sanitation efficiencies during treatment of liquid cattle manure. The pilot plant produced a high methane yield from liquid dairy cattle manure of 0.24 m3 (kg VSfed)(-1) Considering the low system loading rate of 1.4-1.5 kg VS (m3 d)(-1), digestion efficiency compared to conventional processes did not appear improved. The minimum guaranteed retention time in the tubular thermophilic reactor was increased compared to a continuously stirred tank reactor. Levels of intestinal enterococci in raw liquid manure as determined with cultivation methods were reduced by 2.5 -3 log units to a level of around 10(2) cfu/mL. This sanitizing effect was achieved both during mesophilic-thermophilic-mesophilic and thermophilic-mesophilic treatment, provided the thermophilic digester was operated at 53-55 degrees C. A change in feeding interval from 1 h to 4 h did not significantly alter methane yield and sanitation efficiency. It was proposed that a two-stage, thermophilic-mesophilic anaerobic digestion system would be able to achieve the same sanitizing effect and equal or better digestion efficiency at lower costs.  相似文献   

15.
简要介绍城市生活垃圾的来源、成分及现有的一些处理方法,并着重介绍城市生活垃圾的厌氧消化处理技术的原理、基本过程,以及影响厌氧消化的因素。最后介绍厌氧消化技术在国内国外的研究现状及进展。  相似文献   

16.
With several advantages over the conventional mesophilic anaerobic digestion, such as better sludge quality and higher biogas production, thermophilic anaerobic digestion is regarded as a promising alternative for sludge digestion. Primary and activated sludges are complex materials, and historically, analysis of kinetics has been largely on whole sludge, without analysis of individual components. This paper analyses relative digestion kinetics of pure substrates designed to target main stages of sludge digestion under thermophilic and mesophilic conditions. Hydrolysis rate of cellulose was significantly influenced by temperature with hydrolysis coefficients of--at 55 degrees C (0.7 +/- 0.1 day(-1)), 60 degrees C (0.8 +/- 0.2 day(-1)), 65 degrees C (1.1 +/- 0.2 day(-1)) and 70 degrees C (1.2 +/- 0.2 day(-1)) over 38 degrees C (0.4 +/- 0.1 day(-1)). This strongly follows the Arrhenius relationship, with an activation energy (E(A)) of 31 +/- 4 kJ mol(-1), corresponding to an increase of 1.5x for each 10 degrees C of temperature increase. Glucose uptake was rapid with a wide variety of fermentation products detected under mesophilic conditions, while uptake was slower under thermophilic conditions with acetate and propionate being dominant products. Propionate acetogenesis and acetate-utilizing methanogenesis kinetics were not influenced by temperatures. Hydrolysis is widely regarded as a rate-limiting step in sludge digestion, thus improvements in hydrolysis rates as measured during this study have the potential for significant improvements in overall apparent sludge digestion rates.  相似文献   

17.
The objective of this study was to compare methane production and characteristics of digested material in anaerobic digestion concepts according to the Animal By-Products Regulation (ABP-Regulation) of the EC (hygienisation of biowaste for 1 hour at 70 degrees C, particle size < 12 mm) and Finnish national regulations (treatment temperature 55 degrees C, feeding interval 24 h, hydraulic retention time (HRT) 20 d, particle size < 40 mm) and with small variations in treatment methods for treating manure and biowaste. Moreover, the survival of three different salmonella bacteria in these processes was studied. Hygienisation of biowaste prior to digestion at 35 degrees C enhanced methane production by 14-18% compared to similar treatment without hygienisation. The differences in treatment temperature, HRT and hygienisation of biowaste prior to digestion did not significantly affect the characteristics of digested material. The concepts according to the ABP-Regulation and Finnish national regulations were effective in destroying salmonella bacteria to an undetectable level.  相似文献   

18.
Anaerobic technologies have proved successful in the treatment of various high strength wastewaters with perceptible advantages over aerobic systems. The applicability of anaerobic processes to treat low strength wastewaters has been increasing with the evolution of high-rate reactors capable of achieving high sludge retention time (SRT) when operating at low HRT. However, the performance of these systems can be affected by high variations in flow and wastewater composition. This paper reports on the comparative study carried out with two such high rate reactors systems to evaluate their performances when used for the treatment of low strength wastewaters at high hydraulic rates. One of the two systems is the most commonly used upflow anaerobic sludge blanket (UASB) reactor in which all reactions occur within a single vessel. The other is the granular bed baffled reactor (GRABBR) that encourages different stages of anaerobic digestion in separate vessels longitudinally across the reactor. The reactors, with equal capacity of 10 litres, were subjected to increasing organic loading rates (OLRs) and hydraulic retention times (HRTs) of up to 60 kg COD m(-3) d(-1) and 1 h respectively. Results show that the GRABBR has greater processes stability at relatively low HRTs, whilst the UASB seems to be better equipped to cope with organic overloads or shockloads. The study also shows that the GRABBR enables the harvesting of biogas with greater energetic value and hence greater re-use potential than the UASB. Biogas of up to 86% methane content is obtainable with GRABBR treating low strength wastewaters.  相似文献   

19.
Many environmental problems caused by endocrine disruptors (EDs) have been reported. It is reported that EDs flow into sewage treatment plants, and it has been pointed out that these may be shifted from the wastewater treatment process to the sludge treatment process. Little is known about the fate of EDs accumulated in sewage sludge, so we carried out a study to clarify the fate of EDs in sewage sludge treatment processes, especially in an anaerobic digestion process. In this study, nonylphenol (NP) was selected as a target ED. Nonylphenol ethoxylates (NPnEO) or nonylphenoxy acetic acids (NPnEC), which were the precursor of NP, were added to an anaerobic digestion process, and mass balance was investigated. The following results were obtained from the anaerobic digestion experiments. (1) NP1EO was injected to an anaerobic digestion testing apparatus that was operated at a retention time of approximately 28 d and a temperature of 35 degrees C with thickened sludge sampled from an actual wastewater treatment plant. Approximately 40% of the injected NP1EO was converted to NP. (2) NP1EC was injected to an anaerobic digestion testing apparatus with thickened sludge. As a result, almost all injected NP1EC was converted to NP. When NP2EC was injected, NP2EC was not converted to NP until the 20th day.  相似文献   

20.
微塑料是一种广泛存在的新型环境污染物,几乎存在于任何环境介质中,在海洋、河流、陆地、大气、土壤中均发现有微塑料污染.为更好地了解淡水环境中微塑料的研究情况,详细介绍了淡水系统中的微塑料采样和预处理方法,并探讨了其发展方向.其中,采样方法涉及水体、沉积物及水生生物方面;在微塑料的提取方面,比较了不同提取溶液和提取方法的优...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号