首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A parallel asynchronous evolutionary algorithm controlled by strongly interacting demes for single- and multi-objective optimization problems is proposed. It is suitable even for non-homogeneous, multiprocessor systems, ensuring maximum exploitation of the available processors. The search algorithm utilizes a structured topology of evaluation agents organized in a number of inter-communicating demes arranged on a 2D supporting mesh. Once an evaluation terminates and a processor becomes idle, a series of intra- and inter-deme processes determines the next agent to undergo evaluation on this specific processor. Real coding and differential evolution operators are used. Mathematical and aerodynamic-turbomachinery optimization problems are presented to assess the proposed method in terms of CPU cost, parallel efficiency and quality of solutions obtained within a predefined number of evaluations. Comparisons with conventional evolutionary algorithms, parallelized based on the master–slave model on the same computational platform, are presented.  相似文献   

2.
Reservoir flood control operation (RFCO) is a challenging optimization problem with interdependent decision variables and multiple conflicting criteria. By considering safety both upstream and downstream of the dam, a multi-objective optimization model is built for RFCO. To solve this problem, a multi-objective optimizer, the multi-objective evolutionary algorithm based on decomposition–differential evolution (MOEA/D-DE), is developed by introducing a differential evolution-inspired recombination into the algorithmic framework of the decomposition-based multi-objective optimization algorithm, which has been proven to be effective for solving complex multi-objective optimization problems. Experimental results on four typical floods at the Ankang reservoir illustrated that the suggested algorithm outperforms or performs as well as the comparison algorithms. It can significantly reduce the flood peak and also guarantee the dam’s safety.  相似文献   

3.
This paper describes the shape optimization of a low specific speed centrifugal pump at the design point. The target pump has already been manually modified on the basis of empirical knowledge. A genetic algorithm (NSGA-II) with certain enhancements is adopted to improve its performance further with respect to two goals. In order to limit the number of design variables without losing geometric information, the impeller is parametrized using the Bézier curve and a B-spline. Numerical simulation based on a Reynolds averaged Navier–Stokes (RANS) turbulent model is done in parallel to evaluate the flow field. A back-propagating neural network is constructed as a surrogate for performance prediction to save computing time, while initial samples are selected according to an orthogonal array. Then global Pareto-optimal solutions are obtained and analysed. The results manifest that unexpected flow structures, such as the secondary flow on the meridian plane, have diminished or vanished in the optimized pump.  相似文献   

4.
针对实践中多目标优化问题(MOPs)的Pareto解集(PS)未知且比较复杂的特性,提出了一种基于"探测"(Exploration)与"开采"(Exploitation)的多目标进化算法(MOEA)——MOEA/2E。该算法在进化过程中采用"探测"与"开采"相结合的方法,用进化操作不断地探测新的搜索区域,用局部搜索充分开采优秀的解区域,并用隐最优个体保留机制保存每一代的最优个体。与目前最流行且有效的多目标进化算法NSGA-Ⅱ及SPEA-Ⅱ进行的比较实验结果表明,MOEA/2E获得的Pareto最优解集具有更好的收敛性与分布性。  相似文献   

5.
Xiaomei Xu  Heow Pueh Lee 《工程优选》2017,49(10):1665-1684
In this study, an optimization problem concerning sandwich panels is investigated by simultaneously considering the two objectives of minimizing the panel mass and maximizing the sound insulation performance. First of all, the acoustic model of sandwich panels is discussed, which provides a foundation to model the acoustic objective function. Then the optimization problem is formulated as a bi-objective programming model, and a solution algorithm based on the non-dominated sorting genetic algorithm II (NSGA-II) is provided to solve the proposed model. Finally, taking an example of a sandwich panel that is expected to be used as an automotive roof panel, numerical experiments are carried out to verify the effectiveness of the proposed model and solution algorithm. Numerical results demonstrate in detail how the core material, geometric constraints and mechanical constraints impact the optimal designs of sandwich panels.  相似文献   

6.
结构主动控制的一体化多目标优化研究   总被引:1,自引:0,他引:1  
基于Pareto多目标遗传算法提出了结构主动控制系统的一体化多目标优化设计方法,对作动器位置与主动控制器进行同步优化设计.外界激励采用平稳过滤白噪声来模拟,在状态空间下通过求解Lyapunov方程,得到结构响应和主动控制力的均方值.主动控制器采用LQG控制算法来进行设计.以结构位移和加速度均方值最大值与相应无控响应均方值的最大值之比,以及所需控制力均方值之和作为多目标同步优化的目标函数.优化过程还考虑了结构与激励参数对优化结果的影响.最后以某6层平面框架有限元模型为例进行了计算机仿真分析,结果表明所提出的主动控制系统多目标一体化优化方法简单,高效,实用,具有较好的普适性.  相似文献   

7.
The minimization of variability in a key design feature or performance measure, in the presence of variability in the realized values of design parameters, is discussed and an analytic solution for quadratic performance measures is provided. Solutions are based on the determination of optimum nominal (or design point) values for the design parameters, subject to constraints in the form of a given nominal performance at the design point and limits on the nominal values of the design parameters, which preserve the design concept. The more general, numerical, problem solution is addressed and a previously described deterministic procedure which generated multiple local optima is improved by the replacement of a simplex search method with a sophisticated genetic algorithm which, with suitable parameter values and choice of Lagrange multiplier, converges only to the required global minimum within the specified design parameter limits. Further improvements are discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Two techniques for the numerical treatment of multi-objective optimization problems—a continuation method and a particle swarm optimizer—are combined in order to unite their particular advantages. Continuation methods can be applied very efficiently to perform the search along the Pareto set, even for high-dimensional models, but are of local nature. In contrast, many multi-objective particle swarm optimizers tend to have slow convergence, but instead accomplish the ‘global task’ well. An algorithm which combines these two techniques is proposed, some convergence results for continuous models are provided, possible realizations are discussed, and finally some numerical results are presented indicating the strength of this novel approach.  相似文献   

9.
B. Y. Qu 《工程优选》2013,45(4):403-416
Different constraint handling techniques have been used with multi-objective evolutionary algorithms (MOEA) to solve constrained multi-objective optimization problems. It is impossible for a single constraint handling technique to outperform all other constraint handling techniques always on every problem irrespective of the exhaustiveness of the parameter tuning. To overcome this selection problem, an ensemble of constraint handling methods (ECHM) is used to tackle constrained multi-objective optimization problems. The ECHM is integrated with a multi-objective differential evolution (MODE) algorithm. The performance is compared between the ECHM and the same single constraint handling methods using the same MODE (using codes available from http://www3.ntu.edu.sg/home/EPNSugan/index.htm). The results show that ECHM overall outperforms the single constraint handling methods.  相似文献   

10.
In the past decade, urban last-mile logistics (ULML) has attracted increasing attention with the growth of e-commerce. Under this background, express cabinet has been gradually advocated to improve the efficiency of ULML. This paper focuses on the multi-objective green express cabinet assignment problem (MGECAP) in ULML, where the objectives to be minimised are the total cost and the energy consumption. MGECAP is concerned with optimising the purchase and assignment decision of express cabinets, which is different from conventional assignment problems. To solve MGECAP, firstly, the integer programming model and the corresponding surrogate model are established. Secondly, problem-dependent heuristics, including the solution representation, genetic operators, and repair strategy of infeasible solutions, are proposed. Thirdly, a probability guided multi-objective evolutionary algorithm based on decomposition (PG-MOEA/D) is proposed, which can balance the limited computation resource among sub-problems during the iterative process. Meanwhile, a feedback strategy is put forward to alternatively generate new solutions when the probability condition is not satisfied. Finally, numerical results and a real-life case study demonstrate the effectiveness and the practical values of the PG-MOEA/D.  相似文献   

11.
Sami Barmada  Marco Raugi 《工程优选》2016,48(10):1740-1758
In this article, a new population-based algorithm for real-parameter global optimization is presented, which is denoted as self-organizing centroids optimization (SOC-opt). The proposed method uses a stochastic approach which is based on the sequential learning paradigm for self-organizing maps (SOMs). A modified version of the SOM is proposed where each cell contains an individual, which performs a search for a locally optimal solution and it is affected by the search for a global optimum. The movement of the individuals in the search space is based on a discrete-time dynamic filter, and various choices of this filter are possible to obtain different dynamics of the centroids. In this way, a general framework is defined where well-known algorithms represent a particular case. The proposed algorithm is validated through a set of problems, which include non-separable problems, and compared with state-of-the-art algorithms for global optimization.  相似文献   

12.
This paper describes an evolutionary algorithm that was developed for catalog design. This algorithm is based on genetic algorithms, but uses an object-oriented coding scheme to represent a design, and introduces unique crossover and mutation operators. To account for the dependence of system performance on both system configuration and component selection, the evolutionary algorithm allows for simultaneous alterations of configurations and components. This new approach allows the consideration of alternate configurations and allows the configurations to evolve to make the best use of the available components. Using this evolutionary algorithm, a piping system was designed in which cooling fluid was delivered to three machines on a manufacturing floor at specified pressures and flow rates. The algorithm was able to find good designs that satisfied the given design specifications.  相似文献   

13.
Ava Shahrokhi 《工程优选》2013,45(6):497-515
A multi-layer perceptron neural network (NN) method is used for efficient estimation of the expensive objective functions in the evolutionary optimization with the genetic algorithm (GA). The estimation capability of the NN is improved by dynamic retraining using the data from successive generations. In addition, the normal distribution of the training data variables is used to determine well-trained parts of the design space for the NN approximation. The efficiency of the method is demonstrated by two transonic airfoil design problems considering inviscid and viscous flow solvers. Results are compared with those of the simple GA and an alternative surrogate method. The total number of flow solver calls is reduced by about 40% using this fitness approximation technique, which in turn reduces the total computational time without influencing the convergence rate of the optimization algorithm. The accuracy of the NN estimation is considerably improved using the normal distribution approach compared with the alternative method.  相似文献   

14.
Nantiwat Pholdee 《工程优选》2014,46(8):1032-1051
In this article, real-code population-based incremental learning (RPBIL) is extended for multi-objective optimization. The optimizer search performance is then improved by integrating a mutation operator of evolution strategies and an approximate gradient into its computational procedure. RPBIL and its variants, along with a number of established multi-objective evolutionary algorithms, are then implemented to solve four multi-objective design problems of trusses. The design problems are posted to minimize structural mass and compliance while fulfilling stress constraints. The comparative results based on a hypervolume indicator show that the proposed hybrid RPBIL is the best performer for the large-scale truss design problems.  相似文献   

15.
Advanced reinforced composite structures incorporating piezoelectric sensors and actuators are increasingly becoming important due to the development of smart structures. These structures offer potential benefits in a wide range of engineering applications such as vibration and noise suppression, shape control and precision positioning. This paper presents a finite element formulation based on the classical laminated plate theory for laminated structures with integrated piezoelectric layers or patches, acting as sensors and actuators. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of freedom for the generalized displacements, and one additional electrical potential degree of freedom for each surface bonded piezoelectric element layer or patch. The control is initialized through a previous optimization of the core of the laminated structure, in order to minimize the vibration amplitude and maximize the first natural frequency. Also the optimization of the patches position is performed to maximize the piezoelectric actuators efficiency. The simulated annealing algorithm is used for these purposes. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers or patches, and to calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the optimization of an illustrative adaptive laminated plate case. The influence of the position and number of piezoelectric patches, as well as the control gain, are investigated and the results are presented and discussed.  相似文献   

16.
应用物理规划方法对500米口径球面射电望远镜(FAST)精调 Stewart 平台进行了多目标优化设计.根据 Stewart 平台的设计准则,将 Stewart 平台的运动精度、重量和工作效率作为目标函数,构造了相应的以目标函数为变量的偏好函数,建立了基于物理规划的多目标优化模型,采用遗传算法对该优化问题进行求解.结果表明,物理规划避免了基于权重的多目标优化方法中权系数难以确定的问题,有效地给出了优化问题的 Pareto 解.  相似文献   

17.
In this paper, a machine loading problem in a flexible manufacturing system (FMS) is discussed, with bi-criterion objectives of minimising system imbalance and maximising system throughput in the occurrence of technological constraints such as available machining time and tool slots. A mathematical model is used to select machines, assign operations and the required tools in order to minimise the system's imbalance while maximising the throughput. An efficient evolutionary algorithm by hybridising the genetic algorithm (GA) and simulated annealing (SA) algorithm called GASA is proposed in this paper. The performance of the GASA is tested by using 10 sample dataset and the results are compared with the heuristics reported in the literature. The influence of genetic operators on the evolutionary search in GASA is studied and reported. Two machine selection heuristics are proposed and their influence on the quality of the solution is also studied. Extensive computational experiments have been carried out to evaluate the performance of the proposed evolutionary heuristics and the results are presented in tables and figures. The results clearly support the better performance of GASA over the algorithms reported in the literature.  相似文献   

18.
With the increasing attention on environment issues, green scheduling in manufacturing industry has been a hot research topic. As a typical scheduling problem, permutation flow shop scheduling has gained deep research, but the practical case that considers both setup and transportation times still has rare research. This paper addresses the energy-efficient permutation flow shop scheduling problem with sequence-dependent setup time to minimise both makespan as economic objective and energy consumption as green objective. The mathematical model of the problem is formulated. To solve such a bi-objective problem effectively, an improved multi-objective evolutionary algorithm based on decomposition is proposed. With decomposition strategy, the problem is decomposed into several sub-problems. In each generation, a dynamic strategy is designed to mate the solutions corresponding to the sub-problems. After analysing the properties of the problem, two heuristics to generate new solutions with smaller total setup times are proposed for designing local intensification to improve exploitation ability. Computational tests are carried out by using the instances both from a real-world manufacturing enterprise and generated randomly with larger sizes. The comparisons show that dynamic mating strategy and local intensification are effective in improving performances and the proposed algorithm is more effective than the existing algorithms.  相似文献   

19.
20.
This article proposes an efficient metaheuristic based on hybridization of teaching–learning-based optimization and differential evolution for optimization to improve the flatness of a strip during a strip coiling process. Differential evolution operators were integrated into the teaching–learning-based optimization with a Latin hypercube sampling technique for generation of an initial population. The objective function was introduced to reduce axial inhomogeneity of the stress distribution and the maximum compressive stress calculated by Love's elastic solution within the thin strip, which may cause an irregular surface profile of the strip during the strip coiling process. The hybrid optimizer and several well-established evolutionary algorithms (EAs) were used to solve the optimization problem. The comparative studies show that the proposed hybrid algorithm outperformed other EAs in terms of convergence rate and consistency. It was found that the proposed hybrid approach was powerful for process optimization, especially with a large-scale design problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号